Cho tam giác ABC nội tiếp đường tròn (O). Lấy P là 1 điểm tùy ý trên cung nhỏ AB của đường tròn. Hình chiếu của P trên AC,AB là X,Y. Gọi M,N lần lượt là trung điểm BC,XY. Chứng minh góc PNM vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tứ giác CDME có
^MEC = ^MDC = 900
mà 2 góc này kề, cùng nhìn cạnh MC
Vậy tứ giác CDME là tứ giác nt 1 đường tròn
b, bạn ktra lại đề
Tứ giác ABMC nội tiếp \(\Rightarrow\widehat{ABM}+\widehat{ACM}=180^0\)
Mà \(\widehat{ACM}+\widehat{MCE}=180^0\Rightarrow\widehat{ABM}=\widehat{MCE}\)
D và E cùng nhìn CM dưới 1 góc vuông \(\Rightarrow CDME\) nội tiếp
\(\Rightarrow\widehat{MCE}=\widehat{MDE}\) (cùng chắn ME) \(\Rightarrow\widehat{ABM}=\widehat{MDE}\)
Mặt khác D và F cùng nhìn BM dưới 1 góc vuông \(\Rightarrow BFDM\) nội tiếp
\(\Rightarrow\widehat{ABM}+\widehat{FDM}=180^0\)
\(\Rightarrow\widehat{MDE}+\widehat{FDM}=180^0\Rightarrow\) D, E, F thẳng hàng
Tham khảo
https://hoc24.vn/cau-hoi/cho-tam-giac-abc-nhon-noi-tiep-duong-tron-o-tren-canh-bc-lay-diem-d-sao-cho-abc-cad-k-la-duong-tron-noi-tiep-tam-giac-adc-e-la-chan-duong-p.205346682394
1: Xét (O) có
MA là tiếp tuyến
MB là tiếp tuyến
Do đó: MA=MB
hay M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
nên O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra MO\(\perp\)AB
Gọi G là giao điểm của OM và AB
=>MO vuông góc với AB tại G
\(AM=R\sqrt{3}\)
\(\Leftrightarrow\left\{{}\begin{matrix}OG=\dfrac{R^2}{2R}=\dfrac{R}{2}\\GM=2R-\dfrac{R}{2}=\dfrac{3}{2}R\end{matrix}\right.\)
\(\Leftrightarrow AG=\dfrac{R^2\sqrt{3}}{2R}=\dfrac{R\sqrt{3}}{2}\)
\(\left\{{}\begin{matrix}S_{AGM}=S_{BGM}=\dfrac{AG\cdot GM}{2}=\dfrac{R\sqrt{3}}{2}\cdot\dfrac{3R}{2}:2=\dfrac{3R^2\sqrt{3}}{8}\\S_{OGA}=S_{OGB}=\dfrac{OG\cdot GB}{2}=\dfrac{R}{2}\cdot\dfrac{R\sqrt{3}}{2}:2=\dfrac{R^2\sqrt{3}}{8}\end{matrix}\right.\)
\(S_{AOBM}=2\cdot\left(S_{AGM}+S_{OGA}\right)=2\cdot\dfrac{4R^2\sqrt{3}}{8}=R^2\sqrt{3}\)
2: Xét tứ giác NHBI có
\(\widehat{NHB}+\widehat{NIB}=180^0\)
Do đó: NHBI là tứ giác nội tiếp
Suy ra: \(\widehat{NHI}=\widehat{NBA}\)
mik ko bt lm bài này bn à . mik thông minh lắm mấy bn mới ngu ấy