K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2017

nâng cao phát triển toán 9, tập 1 phần bài tập của chuyên đề cực trị hay min max gì đó, mik không nhớ cụ thể bài, bạn tự tìm nhá

1 tháng 9 2021

Ta có: \(\sqrt{x^2-2x+10}=\sqrt{x^2-2x+1+9}=\sqrt{\left(x-1\right)^2+9}\ge\sqrt{9}\ge3\)

          \(\sqrt{x^2+4x+5}=\sqrt{x^2+4x+4+1}=\sqrt{\left(x+2\right)^2+1}\ge\sqrt{1}\ge1\)

    \(\Rightarrow\)   \(\sqrt{x^2-2x+10}+\sqrt{x^2+4x+5}\ge1+3\ge4\)

Vậy GTNN của biểu thức là 4

2 tháng 9 2021

 

thế cho mik hỏi dấu = xảy ra khi nào?

sai nha bạn ơi

20 tháng 10 2015

a) x2 - 2x + 5 = (x - 1)2 + 4 >= 4

Min là 4 khi x = 1

 

12 tháng 8 2018

P = \(\sqrt{x^2-2x+5}\)

P= \(\sqrt{x^2-2x+1+4}\)

P=\(\sqrt{\left(x-1\right)^2+2^2}\)

=> P đạt GTNN bằng 4 <=> x-1=0

                                   <=> x  =1

Vậy P đạt GTNN bằng 4 <=> x= 1 .

T thấy đây chỉ là bài toán lớp 7 thôi.

12 tháng 8 2018

thế cái căn bậc 2 để làm clgt

2 tháng 7 2017

\(P=\sqrt{x^2-2x+5}=\sqrt{\left(x^2-2x+1\right)+4}=\sqrt{\left(x-1\right)^2+4}\ge\sqrt{4}=2\)

NV
2 tháng 9 2021

\(P\le\sqrt{2\left(3x-5+7-3x\right)}=2\)

\(P_{max}=2\) khi \(3x-5=7-3x\Rightarrow x=2\)

\(A=2\left(x-1\right)+\dfrac{9}{x-1}+2\ge2\sqrt{\dfrac{18\left(x-1\right)}{x-1}}+2=6\sqrt{2}+2\)

\(A_{min}=6\sqrt{2}+2\) khi \(x=\dfrac{2+3\sqrt{2}}{2}\)