K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2017

bạn ơi, cho mik hỏi, giải pt phải có 2 vế chứ, M = bao nhiêu vậy bạn

Nếu M= 0 thì bạn dùng đánh giá là 2 căn >= 0 rồi tự giải

                  

20 tháng 1 2017

2a^4=(1-a)^2=a^2-2a+1

\(A=\frac{2a-3}{\sqrt{2\left(a^2-4a+4\right)}+2a^2}=\frac{2a-3}{\sqrt{2}!\left(a-2\right)!+2a^2}\)a> 2 không thể là nghiệm=> a<2

\(A=\frac{2a-3}{\sqrt{2}\left(2-a\right)+2a^2}=\frac{2a-3}{2a^2-\sqrt{2}a+2\sqrt{2}}=\frac{2a-3}{\sqrt{2}\left(\sqrt{2}a^2-a-1+3\right)}\)

\(A=\frac{2a-3}{\sqrt{2}\left(3\right)}\)

20 tháng 1 2017

bạn giải thích rõ hơn được không ?

ĐKXĐ: \(a\ge2\)

Ta có: \(\sqrt{a+2\sqrt{2a-4}}-\sqrt{a-2\sqrt{2a-4}}\)

\(=\sqrt{a-2+2\cdot\sqrt{a-2}\cdot\sqrt{2}+2}-\sqrt{a-2-2\cdot\sqrt{a-2}\cdot\sqrt{2}+2}\)

\(=\sqrt{\left(\sqrt{a-2}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{a-2}-\sqrt{2}\right)^2}\)

\(=\left|\sqrt{a-2}+\sqrt{2}\right|-\left|\sqrt{a-2}-\sqrt{2}\right|\)

\(=\sqrt{a-2}+\sqrt{2}-\left|\sqrt{a-2}-\sqrt{2}\right|\)(*)

Trường hợp 1: \(a\ge4\)

(*)\(=\sqrt{a-2}+\sqrt{2}-\left(\sqrt{a-2}-\sqrt{2}\right)\)

\(=\sqrt{a-2}+\sqrt{2}-\sqrt{a-2}+\sqrt{2}\)

\(=2\sqrt{2}\)

Trường hợp 2: a<4

(*)\(=\sqrt{a-2}+\sqrt{2}-\left(\sqrt{2}-\sqrt{a-2}\right)\)

\(=\sqrt{a-2}+\sqrt{2}-\sqrt{2}+\sqrt{a-2}\)

\(=2\sqrt{a-2}\)

1) Để biểu thức có nghĩa thì \(a^2+2a-3\ge0\)

\(\Leftrightarrow\left(a+3\right)\left(a-1\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}a-1\ge0\\a+3\le0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a\ge1\\a\le-3\end{matrix}\right.\)

2) Để biểu thức có nghĩa thì \(\left\{{}\begin{matrix}a-1\ge0\\a\ne0\end{matrix}\right.\Leftrightarrow a\ge1\)

3) Để biểu thức có nghĩa thì \(a>0\)

4) Để biểu thức có nghĩa thì \(\left\{{}\begin{matrix}a\ne-\dfrac{1}{2}\\\left[{}\begin{matrix}a-1\ge0\\2a+1< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a\ne-\dfrac{1}{2}\\\left[{}\begin{matrix}a\ge1\\a< -\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a\ge1\\a< -\dfrac{1}{2}\end{matrix}\right.\)

6 tháng 7 2021

1) Để biểu thức có nghĩa  \(\Rightarrow a^2+2a-3\ge0\Rightarrow\left(a-1\right)\left(a+3\right)\ge0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a-1\ge0\\a+3\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}a-1\le0\\a+3\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}a\ge1\\a\le-3\end{matrix}\right.\)

2) Để biểu thức có nghĩa \(\Rightarrow\dfrac{\left(a-1\right)^3}{a^2}\ge0\Rightarrow\left\{{}\begin{matrix}\left(a-1\right)^3\ge0\\a\ne0\end{matrix}\right.\Rightarrow a\ge1\)

3) Để biểu thức có nghĩa \(\Rightarrow\dfrac{a^2+1}{2a}\ge0\Rightarrow2a>0\Rightarrow a>0\)

4) Để biểu thức có nghĩa \(\Rightarrow\dfrac{a-1}{2a+1}\ge0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a-1\ge0\\2a+1>0\end{matrix}\right.\\\left\{{}\begin{matrix}a-1\le0\\2a+1< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}a\ge1\\a< -\dfrac{1}{2}\end{matrix}\right.\)

5 tháng 7 2023

\(a,\dfrac{a\sqrt{a}-8+2a-4\sqrt{a}}{a-4}\left(dk:a\ne4\right)\)

\(=\dfrac{a\sqrt{a}-4\sqrt{a}-8+2a}{a-4}\)

\(=\dfrac{\sqrt{a}\left(a-4\right)+2\left(a-4\right)}{a-4}\)

\(=\dfrac{\left(a-4\right)\left(\sqrt{a}+2\right)}{a-4}\)

\(=\sqrt{a}+2\)

\(b,\dfrac{12\sqrt{6}}{\sqrt{7+2\sqrt{6}}-\sqrt{7-2\sqrt{6}}}\\ =\dfrac{12\sqrt{6}}{\sqrt{\left(\sqrt{6}+1\right)^2}-\sqrt{\left(\sqrt{6}-1\right)^2}}\\ =\dfrac{12\sqrt{6}}{\left|\sqrt{6}+1\right|-\left|\sqrt{6}-1\right|}\\ =\dfrac{12\sqrt{6}}{\sqrt{6}+1-\sqrt{6}+1}\\ =\dfrac{12\sqrt{6}}{2}\\ =6\sqrt{6}\)