K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2017

đặt A = abc = ( 102 . a + 10 . b + c ) \(⋮\)37

\(\Rightarrow\)10A = ( 103 . a + 102 . b + 10c ) \(⋮\)37

10A = 102 . b + 10 . c + a + 999a = bca + 999a 

vì 999a = 37 . 27a \(⋮\)37  ; 10A \(⋮\)37

suy ra : bca \(⋮\)37

tương tự ta có : 10bca \(⋮\)37, 999b \(⋮\)37

suy ra : cab \(⋮\)37

12 tháng 10 2014

giúp tôi đi mà cứ ko đúng làm gì

25 tháng 10 2016

Vì chia hết cho 37 chỉ cần tổng các chữ số chẳng hạn như 3 ; 9.

=>abc chia hết cho 37 thì cả bca và cab chia hết cho 7.

27 tháng 6 2018

 vào câu hỏi của Ngân sally bạn ấy có cậu hỏi giống bạn

27 tháng 6 2018

\(abc⋮37\Leftrightarrow100a+10b+c⋮37\Leftrightarrow26a+10b+c⋮37\Leftrightarrow\)abc có gạch trên đầu 

\(10\left(26a+10b+c\right)⋮37\Leftrightarrow260a+100b+10c⋮37\Leftrightarrow a+100b+10c⋮37\)

\(\Leftrightarrow\)bca   \(⋮37\)(1)

\(abc⋮37\Leftrightarrow100a+10b+c⋮37\Leftrightarrow26a+10b+c⋮37\)abc có gạch trên đầu 

\(\Leftrightarrow100\left(26a+10b+c\right)⋮37\Leftrightarrow2600a+1000b+100c⋮37\)

\(\Leftrightarrow10a+b+100c⋮37\Leftrightarrow\)cab    \(⋮37\)(2)

Từ (1) và (2) =>abc  \(⋮37\)thì bca và cab \(⋮37\)

21 tháng 10 2015

hi câu hỏi tương tự đó bn na 

L I K E mk cái nha mk rất cần Vân Anh à

21 tháng 10 2015

Câu hỏi tương tự nha bạn

    

15 tháng 7 2015

(abc) chia hết cho 37=> 100.a + 10.b + c chia hết cho 37 
=> 1000.a + 100.b + 10.c chia hết cho 37 
=> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37) 
=> 100.b + 10.c + a = (bca) chia hết cho 37 

4 tháng 8 2016

 (abc) chia hết cho 37 ---> 100.a + 10.b + c chia hết cho 37 
---> 1000.a + 100.b + 10.c chia hết cho 37 
---> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37) 
---> 100.b + 10.c + a = (bca) chia hết cho 37 

(bca) chia hết cho 37 ---> 100.b+10.c+a chia hết cho 37 
---> 1000.b + 100.c + 10.a chia hết cho 37 
---> 1000.b - 999.b + 100.c + 10.a chia hết cho 37 (vì 999.b chia hết cho 37) 
---> 100.c + 10.a + b = (cab) chia hết cho 37

25 tháng 11 2021

Số (abc) chia hết cho 37 => 100a + 10b + c chia hết cho 37 =>(Nhân 10 vô) 1000a + 100b + 10c chia hết cho 37 (1). Trừ cho 999a thì (1) vẫn chia hết cho 37 do 999 chia hết cho 37 từ đó suy ra đpcm!

23 tháng 10 2015

Tham khảo câu hỏi tương tự nha bạn 

CHÚC BẠN HỌC TỐT NHA !

3 tháng 7 2016

 Ta có abc chia hết cho 37 thì abc0 chia hết cho 37. 
-> a000 + bc0 chia hết cho 37 
-> 1000xa +bc0 chia hết cho 37 
-> 999xa + a + bc0 chia hết cho 37 
-> 27x37xa + bca chia hết cho 37 
Do 27x37xa chia hết cho 37 nên bca chia hết cho 37.

3 tháng 7 2016

abc ⋮ 37

=> abc x 10 ⋮ 37

=> ( 100a + 10b + c) .10 ⋮ 37

=> 1000a+100b+10c ⋮37

=> 999a + ( 100b+10c+a)⋮37

=> 37.(27a) + bca ⋮ 37

Mà 37(27a)⋮37 nên bca chia hết cho 37.

bca ⋮ 37 nên bca.10⋮37

=> ( 100b + 10c + a ) .10 ⋮37

=> 1000b + 100c +10a ⋮37

=> 999b +(100c+10a+b)⋮37

=> 37(27b) + cab ⋮ 37

Mà 37 . (27b)⋮37 nên cab ⋮ 37

8 tháng 12 2014

                   Tớ giải hộ bạn câu 1 nhé. (Câu 2 tớ cũng đăng lên olm rồi <_>)

1.                                                  Giải

Gọi bốn số tự nhiên tùy ý là : A1; A2; A3; A4.

Khi chia : A1; A2; A3; A4 cho 3, ta được:

A1= 3 x k1 + r1 với: 0  r< 3

A2=3 x k2 + r2 với: 0 ≥ r2 < 3

A3=3 x k3 + r3 với: 0 ≥ r3 <3

A4=3 x k4 + r4 với: ≥ r4 <3

Vì khi chia cho 3 các số dư r1; r2; r3; r4 chỉ nhận 1 trong 3 giá trị: 0; 1; 2. Nên chắc chắn có ít nhất 2 số bằng nhau.

Ta lấy: r1 = r23k2

=>Ta có: A1 - A2 = (3k1 + r1) - ( 3k2 + r2) = (3k1 -3k2) chia hết cho 3.

=>Trong bốn số tự nhiên tùy ý, có ít nhất 2 số có hiệu chia hết cho 3.

2 tháng 11 2018

ta co:abc=100a+10b+1c=111.abc chia het cho 37

        bca=100b.10c.1a=111bca chia het cho 37

        cab=100c.10a.1b=111cba

=>abc,bca,cab deu chia het cho 37