K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2014

                   Tớ giải hộ bạn câu 1 nhé. (Câu 2 tớ cũng đăng lên olm rồi <_>)

1.                                                  Giải

Gọi bốn số tự nhiên tùy ý là : A1; A2; A3; A4.

Khi chia : A1; A2; A3; A4 cho 3, ta được:

A1= 3 x k1 + r1 với: 0  r< 3

A2=3 x k2 + r2 với: 0 ≥ r2 < 3

A3=3 x k3 + r3 với: 0 ≥ r3 <3

A4=3 x k4 + r4 với: ≥ r4 <3

Vì khi chia cho 3 các số dư r1; r2; r3; r4 chỉ nhận 1 trong 3 giá trị: 0; 1; 2. Nên chắc chắn có ít nhất 2 số bằng nhau.

Ta lấy: r1 = r23k2

=>Ta có: A1 - A2 = (3k1 + r1) - ( 3k2 + r2) = (3k1 -3k2) chia hết cho 3.

=>Trong bốn số tự nhiên tùy ý, có ít nhất 2 số có hiệu chia hết cho 3.

9 tháng 10 2018

Trong các số dư khi chia cho 3 thì có tất cả là ba số dư.

Mà theo đề bài thì có 4 số nên theo nguyên lí Đi - rích - lê thì có ít nhất 2 số đồng dư khi chia cho 3. Khi đó có ít nhất một hiệu của 2 số đồng dư đó chia hết cho 3.

15 tháng 7 2015

(abc) chia hết cho 37=> 100.a + 10.b + c chia hết cho 37 
=> 1000.a + 100.b + 10.c chia hết cho 37 
=> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37) 
=> 100.b + 10.c + a = (bca) chia hết cho 37 

4 tháng 8 2016

 (abc) chia hết cho 37 ---> 100.a + 10.b + c chia hết cho 37 
---> 1000.a + 100.b + 10.c chia hết cho 37 
---> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37) 
---> 100.b + 10.c + a = (bca) chia hết cho 37 

(bca) chia hết cho 37 ---> 100.b+10.c+a chia hết cho 37 
---> 1000.b + 100.c + 10.a chia hết cho 37 
---> 1000.b - 999.b + 100.c + 10.a chia hết cho 37 (vì 999.b chia hết cho 37) 
---> 100.c + 10.a + b = (cab) chia hết cho 37

20 tháng 2 2016

(abc) chia hết cho 37 ---> 100.a + 10.b + c chia hết cho 37 
---> 1000.a + 100.b + 10.c chia hết cho 37 
---> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37) 
---> 100.b + 10.c + a = (bca) chia hết cho 37 

(bca) chia hết cho 37 ---> 100.b+10.c+a chia hết cho 37 
---> 1000.b + 100.c + 10.a chia hết cho 37 
---> 1000.b - 999.b + 100.c + 10.a chia hết cho 37 (vì 999.b chia hết cho 37) 
---> 100.c + 10.a + b = (cab) chia hết cho 37

25 tháng 11 2021

Số (abc) chia hết cho 37 => 100a + 10b + c chia hết cho 37 =>(Nhân 10 vô) 1000a + 100b + 10c chia hết cho 37 (1). Trừ cho 999a thì (1) vẫn chia hết cho 37 do 999 chia hết cho 37 từ đó suy ra đpcm!

28 tháng 6 2015

 Có 4 số tự nhiên mà chỉ có 3 số dư (0 ; 1 ; 2) khi chia cho 3

Theo nguyên lý Đỉíchlê  => tồn tại hai số có cùng số dư khi chia cho 3 => hiệu hai số đó chia hết cho 3 (đpcm)

9 tháng 10 2018

đinh lí ấy là giừ đấy

2 tháng 11 2018

ta co:abc=100a+10b+1c=111.abc chia het cho 37

        bca=100b.10c.1a=111bca chia het cho 37

        cab=100c.10a.1b=111cba

=>abc,bca,cab deu chia het cho 37

27 tháng 7 2015

1. gọi 3 stn liên tiếp là n,n+1,n+2

ta có n+n+1+n+2 = 3n +3 = 3(n+1) : hết cho 3

2. gọi 4 stn liên tiếp là n,n+1,n+2,n+3

ta có n+n+1+n+2+n+3 = 4n+6 

vì 4n ; hết cho 4 mà 6 : hết cho 4

=> 4n+6 ko : hết cho 4

3. gọi 2 stn liên tiếp đó là a,b

ta có a=5q + r

b=5q+r

a-b = ( 5q +r) - (5q1+r)

= 5q - 5q1

= 5(q-q1) : hết cho 5

20 tháng 7 2016

gọi a=3p+r

b=3q+r

xét a-b= (3p+r)-(3q+r)

=3p + r - 3q - r

=3p+3q =3.(p+q) chia hết cho 3

các câu sau làm tương tự

20 tháng 7 2016

ủng hộ mik nha