Tìm các số tự nhiên n sao cho 3n + 13 = bội của n - 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chào Xuân Đức, dạng toán này rất hay và nhiều bạn cũng đã hỏi.
Đức tham khảo cách làm ở đây nhé: https://olm.vn/hoi-dap/question/654053.html
3n+13 là bội của n-3 <=> 3n-9+22 là bội của n-3 <=> 3(n-3)+22 là bội của n-3
mà 3(n-3) là bội của n-3 <=> 22 là bội của n-3 <=> n-3\(\inƯ\left(22\right)=\left\{-22;-11;-2;-1;1;2;11;22\right\}\)
<=>\(n\in\left\{-19;-8;1;2;4;5;14;25\right\}\)
Vì n là số tự nhiên nên \(n\in\left\{1;2;4;5;14;25\right\}\)
Gọi số cần tìm là a
Suy ra (a+2) chia hết cho cả 3,4,5,6
Vậy (a+2) là Bội chung của 3,4,5,6
=>(a+2)=60k (với k thuôc N)
vì a chia hết 11 nên
60k chia 11 dư 2
<=>55k+5k chia 11 dư 2
<=>5k chia 11 dư 2
<=>k chia 11 dư 7
=>k=11d+7 (với d thuộc N)
Suy ra số cần tìm là a=60k-2=60(11d+7)-2=660d+418 (với d thuộc N)
3n+4 thuộc BC﴾5:n+1﴿ nên 3n+4 chia hết cho n+1,
5 3n+4 chia hết cho n+1
3n+4=﴾3n+3﴿+1 mà 3n+3=3﴾n+1﴿ chia hết cho n+1 nên 1 chia hết cho n+1 nên n=0 để 3n+4 chia hết cho n+1
nếu n=0 ta có
3n+4=3.0+4=0+4=4 không chia hết cho 5
nên n thuộc rỗng để 3n+4 thuộc BC﴾n+1,5﴿
3n+4 thuộc BC(5:n+1) nên 3n+4 chia hết cho n+1,
5 3n+4 chia hết cho n+1
3n+4=(3n+3)+1 mà 3n+3=3(n+1) chia hết cho n+1 nên 1 chia hết cho n+1 nên n=0 để 3n+4 chia hết cho n+1
nếu n=0 ta có
3n+4=3.0+4=0+4=4 không chia hết cho 5
nên n thuộc rỗng để 3n+4 thuộc BC(n+1,5)
chúc bn hok tốt @_@
Ta có :
3n+5 là bội của 2n-1
\(\Rightarrow\)3n+5\(⋮\)2n+1
\(\Rightarrow\)2(3n+5)\(⋮\)2n+1
\(\Rightarrow\)6n+10\(⋮\)2n+1
\(\Rightarrow\)6n+3-13\(⋮\)2n+1
\(\Rightarrow\)3(2n+1)-13\(⋮\)2n+1
Vì 3(2n+1)\(⋮\)2n+1
\(\Rightarrow\)13\(⋮\)2n+1
\(\Rightarrow\)2n+1\(\in\)Ư(13)
2n-1 | n |
1 | -1 |
-1 | 0 |
13 | 7 |
-13 | -6 |
Vậy n\(\in\){1; 0; 7; -6)
Lời giải:
$3n+6\vdots n-1$
$\Rightarrow 3(n-1)+9\vdots n-1$
$\Rightarrow 9\vdots n-1$
$\Rightarrow n-1\in\left\{\pm 1; \pm 3; \pm 9\right\}$
$\Rightarrow n\in\left\{0; 2; -2; 4; 10; -8\right\}$
Vì $n$ là stn nên $n\in\left\{0; 2; 4; 10\right\}$
Bài 10:
a: 2x-3 là bội của x+1
=>\(2x-3⋮x+1\)
=>\(2x+2-5⋮x+1\)
=>\(-5⋮x+1\)
=>\(x+1\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{0;-2;4;-6\right\}\)
b: x-2 là ước của 3x-2
=>\(3x-2⋮x-2\)
=>\(3x-6+4⋮x-2\)
=>\(4⋮x-2\)
=>\(x-2\inƯ\left(4\right)\)
=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{3;1;4;0;6;-2\right\}\)
Bài 14:
a: \(4n-5⋮2n-1\)
=>\(4n-2-3⋮2n-1\)
=>\(-3⋮2n-1\)
=>\(2n-1\inƯ\left(-3\right)\)
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
=>\(2n\in\left\{2;0;4;-2\right\}\)
=>\(n\in\left\{1;0;2;-1\right\}\)
mà n>=0
nên \(n\in\left\{1;0;2\right\}\)
b: \(n^2+3n+1⋮n+1\)
=>\(n^2+n+2n+2-1⋮n+1\)
=>\(n\left(n+1\right)+2\left(n+1\right)-1⋮n+1\)
=>\(-1⋮n+1\)
=>\(n+1\in\left\{1;-1\right\}\)
=>\(n\in\left\{0;-2\right\}\)
mà n là số tự nhiên
nên n=0
3n + 13 là bội n-2
=> 3n+13 chia hết cho n-2
=> 3n-6+19 chia hết cho n-2
=> 3(n-2)+19 chia hết cho n-2
Vì 3(n-2) chia hết cho n-2 nên 19 chia hết cho n-2
=> n-2 thuộc Ư(19)={1;-1;19;-19}