K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2017

3n + 13 là bội n-2 

=> 3n+13 chia hết cho n-2

=> 3n-6+19 chia hết cho n-2

=> 3(n-2)+19 chia hết cho n-2

Vì 3(n-2) chia hết cho n-2 nên 19 chia hết cho n-2

=> n-2 thuộc Ư(19)={1;-1;19;-19}

n-21-119-19
n3121-17
8 tháng 11 2021

You what

15 tháng 9 2018

Chào Xuân Đức, dạng toán này rất hay và nhiều bạn cũng đã hỏi.

Đức tham khảo cách làm ở đây nhé: https://olm.vn/hoi-dap/question/654053.html

27 tháng 9 2017

3n+13 là bội của n-3 <=> 3n-9+22 là bội của n-3 <=> 3(n-3)+22 là bội của n-3 

mà 3(n-3) là bội của n-3 <=> 22 là bội của n-3 <=> n-3\(\inƯ\left(22\right)=\left\{-22;-11;-2;-1;1;2;11;22\right\}\)

<=>\(n\in\left\{-19;-8;1;2;4;5;14;25\right\}\)

Vì n là số tự nhiên nên \(n\in\left\{1;2;4;5;14;25\right\}\)

17 tháng 11 2018

Gọi số cần tìm là a 
Suy ra (a+2) chia hết cho cả 3,4,5,6 
Vậy (a+2) là Bội chung của 3,4,5,6 
=>(a+2)=60k (với k thuôc N) 
vì a chia hết 11 nên 
60k chia 11 dư 2 
<=>55k+5k chia 11 dư 2 
<=>5k chia 11 dư 2 
<=>k chia 11 dư 7 
=>k=11d+7 (với d thuộc N) 
Suy ra số cần tìm là a=60k-2=60(11d+7)-2=660d+418 (với d thuộc N)

12 tháng 12 2016

3n+4 thuộc BC﴾5:n+1﴿ nên 3n+4 chia hết cho n+1,

5 3n+4 chia hết cho n+1

3n+4=﴾3n+3﴿+1 mà 3n+3=3﴾n+1﴿ chia hết cho n+1 nên 1 chia hết cho n+1 nên n=0 để 3n+4 chia hết cho n+1

nếu n=0 ta có

3n+4=3.0+4=0+4=4 không chia hết cho 5

nên n thuộc rỗng để 3n+4 thuộc BC﴾n+1,5﴿ 

3 tháng 12 2017

3n+4 thuộc BC(5:n+1) nên 3n+4 chia hết cho n+1,
5 3n+4 chia hết cho n+1
3n+4=(3n+3)+1 mà 3n+3=3(n+1) chia hết cho n+1 nên 1 chia hết cho n+1 nên n=0 để 3n+4 chia hết cho n+1
nếu n=0 ta có
3n+4=3.0+4=0+4=4 không chia hết cho 5
nên n thuộc rỗng để 3n+4 thuộc BC(n+1,5)

chúc bn hok tốt @_@

31 tháng 12 2020

Ta có :

3n+5 là bội của 2n-1

\(\Rightarrow\)3n+5\(⋮\)2n+1

\(\Rightarrow\)2(3n+5)\(⋮\)2n+1

\(\Rightarrow\)6n+10\(⋮\)2n+1

\(\Rightarrow\)6n+3-13\(⋮\)2n+1

\(\Rightarrow\)3(2n+1)-13\(⋮\)2n+1

Vì 3(2n+1)\(⋮\)2n+1

\(\Rightarrow\)13\(⋮\)2n+1

\(\Rightarrow\)2n+1\(\in\)Ư(13)

            2n-1                    n            
              1          -1
             -1          0
              13         7
            -13          -6

Vậy n\(\in\){1; 0; 7; -6)

AH
Akai Haruma
Giáo viên
29 tháng 10 2023

Lời giải:
$3n+6\vdots n-1$

$\Rightarrow 3(n-1)+9\vdots n-1$

$\Rightarrow 9\vdots n-1$

$\Rightarrow n-1\in\left\{\pm 1; \pm 3; \pm 9\right\}$

$\Rightarrow n\in\left\{0; 2; -2; 4; 10; -8\right\}$

Vì $n$ là stn nên $n\in\left\{0; 2; 4; 10\right\}$

Bài 10:

a: 2x-3 là bội của x+1

=>\(2x-3⋮x+1\)

=>\(2x+2-5⋮x+1\)

=>\(-5⋮x+1\)

=>\(x+1\in\left\{1;-1;5;-5\right\}\)

=>\(x\in\left\{0;-2;4;-6\right\}\)

b: x-2 là ước của 3x-2

=>\(3x-2⋮x-2\)

=>\(3x-6+4⋮x-2\)

=>\(4⋮x-2\)

=>\(x-2\inƯ\left(4\right)\)

=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(x\in\left\{3;1;4;0;6;-2\right\}\)

Bài 14:

a: \(4n-5⋮2n-1\)

=>\(4n-2-3⋮2n-1\)

=>\(-3⋮2n-1\)

=>\(2n-1\inƯ\left(-3\right)\)

=>\(2n-1\in\left\{1;-1;3;-3\right\}\)

=>\(2n\in\left\{2;0;4;-2\right\}\)

=>\(n\in\left\{1;0;2;-1\right\}\)

mà n>=0

nên \(n\in\left\{1;0;2\right\}\)

b: \(n^2+3n+1⋮n+1\)

=>\(n^2+n+2n+2-1⋮n+1\)

=>\(n\left(n+1\right)+2\left(n+1\right)-1⋮n+1\)

=>\(-1⋮n+1\)

=>\(n+1\in\left\{1;-1\right\}\)

=>\(n\in\left\{0;-2\right\}\)

mà n là số tự nhiên

nên n=0

4 tháng 12 2023

thiếu bài 16