Giải bất phương trình \(\frac{2m}{m-2}\le1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải các bất phương trình, hệ bất phương trình (ẩn m) sau:
( 2 m - 1 ) 2 - 4 ( m + 1 ) ( m - 2 ) ≥ 0
( 2 m - 1 ) 2 - 4 ( m + 1 ) ( m - 2 ) ≥ 0 ⇔ 9 ≥ 0. Bất phương trình có tập nghiệm là R.
\(ĐKXĐ:x\ge-\dfrac{3}{2}\)
Bất phương trình tương đương :
\(2x+3+x+2+2\sqrt{\left(2x+3\right)\left(x+2\right)}\le1\)
\(\Leftrightarrow2\sqrt{\left(2x+3\right)\left(x+2\right)}\le-3x-4\)
\(\Leftrightarrow4.\left(2x+3\right)\left(x+2\right)\le\left(-3x-4\right)^2\)
\(\Leftrightarrow4.\left(2x^2+7x+6\right)\le9x^2+16+24x\)
\(\Leftrightarrow x^2-4x-8\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge2+2\sqrt{3}\\x\le2-2\sqrt{3}\end{matrix}\right.\). Kết hợp với ĐKXĐ ....
P/s : E không chắc lắm .....
a, pt <=> x^2-x+5/x^2+x+3 - 1 < 0
<=> x^2-x+5-x^2-x-3/x^2+x+3 > 0
<=> 2-2x/x^2+x+3 > 0
<=> 2-2x > 0 ( vì x^2+x+3 > 0 )
<=> 2 > 2x
<=> x < 1
Vậy x < 1
Tk mk nha
B, =2x2-2x-14\(\le\)x2+1
=(2x2-x2)-2x-15\(\le\)0
=x2-2x-15\(\le\)0
=x2+3x-5x-15\(\le\)0
=x(x+3)-5(x+3)<=0
=(x+3)(x-5)<=0
Bạn giải ra ta được x=-3
x=5
mình nghĩ sửa đề bài là \(\frac{\sqrt{x^2-x+6}+7\sqrt{x}-\sqrt{6\left(x^2+5x-2\right)}}{x+3-\sqrt{2\left(x^2+10\right)}}\le0\)
a)
\(\Leftrightarrow4m^2-4m+1-4\left(m^2-m-2\right)=9\ge0\Leftrightarrow\forall m\in R\)
b)
\(m^2-\left(2m^2+m-1\right)=-m^2-m+1< 0\)
\(\Leftrightarrow m^2+m-1>0\Rightarrow\left(m+\dfrac{1}{2}\right)^2-\dfrac{5}{4}\Rightarrow\left[{}\begin{matrix}m< \dfrac{-1-\sqrt{5}}{2}\\m>\dfrac{-1+\sqrt{5}}{2}\end{matrix}\right.\)
Lời giải:
ĐKXĐ: $x\neq 0; x\geq -2$
Với $-2\leq x< 0$ thì:
$\frac{\sqrt{-x+3x+4}+2}{x}< 0< 1$, BPT luôn đúng với mọi $-2\leq x< 0$
Với $x>0$:
BPT $\Leftrightarrow \frac{\sqrt{2x+4}+2}{x}\leq 1$
$\Leftrightarrow \sqrt{2x+4}+2\leq x$
$\Leftrightarrow \sqrt{2x+4}\leq x-2$
\(\Leftrightarrow \left\{\begin{matrix}
x\geq 2\\
2x+4\leq (x-2)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
x\geq 2\\
x(x-6)\geq 0\end{matrix}\right.\Leftrightarrow x\geq 6\)
Vậy BPT có nghiệm $-2\leq x< 0$ hoặc $x\geq 6$
\(\frac{2m}{m-2}\le1\)
\(\Leftrightarrow\frac{2m-4+4}{m-2}=\frac{2m-4}{m-2}+\frac{4}{m-2}=\frac{2.\left(m-2\right)}{m-2}=2+\frac{4}{m-2}\le1\)
Mà 2 > 1 <=> \(\frac{4}{m-2}\le-1\)