K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2024

A = - 3\(x\).(\(x-5\)) + 3(\(x^2\) - 4\(x\)) - 3\(x\) - 10

A = - 3\(x^2\) + 15\(x\) + 3\(x^2\) - 12\(x\) - 3\(x\) - 10

A = (- 3\(x^2\) + 3\(x^2\)) + (15\(x\) - 12\(x\) - 3\(x\)) - 10

A = 0 + (3\(x-3x\)) - 10

A = 0  - 10

A = - 10 

a) Đặt A(x)=0

\(\Leftrightarrow-4x-5=0\)

\(\Leftrightarrow-4x=5\)

hay \(x=-\dfrac{5}{4}\)

b) Đặt B(x)=0

\(\Leftrightarrow3\left(2x-1\right)-2\left(x+1\right)=0\)

\(\Leftrightarrow6x-3-2x-2=0\)

\(\Leftrightarrow4x=5\)

hay \(x=\dfrac{5}{4}\)

10: \(x\left(x-y\right)+x^2-y^2\)

\(=x\left(x-y\right)+\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y\right)\left(x+x+y\right)\)

\(=\left(x-y\right)\left(2x+y\right)\)

11: \(x^2-y^2+10x-10y\)

\(=\left(x^2-y^2\right)+\left(10x-10y\right)\)
\(=\left(x-y\right)\left(x+y\right)+10\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y+10\right)\)

12: \(x^2-y^2+20x+20y\)

\(=\left(x^2-y^2\right)+\left(20x+20y\right)\)

\(=\left(x-y\right)\left(x+y\right)+20\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y+20\right)\)

13: \(4x^2-9y^2-4x-6y\)

\(=\left(4x^2-9y^2\right)-\left(4x+6y\right)\)

\(=\left(2x-3y\right)\left(2x+3y\right)-2\left(2x+3y\right)\)

\(=\left(2x+3y\right)\left(2x-3y-2\right)\)

14: \(x^3-y^3+7x^2-7y^2\)

\(=\left(x^3-y^3\right)+\left(7x^2-7y^2\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)+7\cdot\left(x^2-y^2\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)+7\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2+7x+7y\right)\)

15: \(x^3+4x-\left(y^3+4y\right)\)

\(=x^3-y^3+4x-4y\)

\(=\left(x^3-y^3\right)+\left(4x-4y\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)+4\left(x-y\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2+4\right)\)

16: \(x^3+y^3+2x+2y\)

\(=\left(x^3+y^3\right)+\left(2x+2y\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)+2\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2+2\right)\)

17: \(x^3-y^3-2x^2y+2xy^2\)

\(=\left(x^3-y^3\right)-\left(2x^2y-2xy^2\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)-2xy\left(x-y\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2-2xy\right)\)

\(=\left(x-y\right)\left(x^2-xy+y^2\right)\)

18: \(x^3-4x^2+4x-xy^2\)

\(=x\left(x^2-4x+4-y^2\right)\)

\(=x\left[\left(x^2-4x+4\right)-y^2\right]\)

\(=x\left[\left(x-2\right)^2-y^2\right]\)

\(=x\left(x-2-y\right)\left(x-2+y\right)\)

8 tháng 12 2023

Phân tích đa thức thành nhân tử nha

6 tháng 1 2021

x2-2 bn

6 tháng 1 2021

bn có thể giải thích rõ hơn không 

13 tháng 7 2019

Giải phương trình??? sử dụng Hooc-ne cho nhanh nhá :v

1) \(x^4-8x^2+4x+3=0\)

( dùng máy tính ta đoán được 1 nghiệm chính xác là -3 )

3 1 0 -8 4 3 1 -3 1 1 0

\(\Leftrightarrow\left(x+3\right)\left(x^3-3x^2+x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^3-3x^2+x+1=0\left(2\right)\end{matrix}\right.\)

Tiếp tục dùng máy tính ta tìm được 1 nghiệm chính xác của pt ( 2 ) là 1

1 1 -3 1 1 1 -2 -1 0

\(\Leftrightarrow\left(x+3\right)\left(x-1\right)\left(x^2-2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-1=0\\x^2-2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\\x=1+\sqrt{2}\\x=1-\sqrt{2}\end{matrix}\right.\)

rồi mấy câu còn lại tương tự

2 tháng 3 2022

A = \(4x^2-3x+7x^2+2x-5\)

\(11x^2-3x+2x-5\)

\(11x^2-x-5\)

B = \(3x+7y-6x-8+y-2\)

\(3x+7y-6x-10+y\)

\(- 3x+7y-10+y\)

\(3x+8y-10\)

C =  chịu

D= \(6x^4-3x^2+x^2-4x+3.4-x+2\)

\(6x^4-3x^2+x^2-4x;12-x+2\\ \)

\(6x^4-3x^2+x^2-4x+14-x\)

\(6x^4-2x^2-4x+14-x\)

\(6x^4-2x^2-5x+14\)

11 tháng 11 2021

\(a,=4x^2+3xy-y^2+4xy-4x^2=7xy-y^2\\ b,=x^2-9-x^3+3x+x^2-3=-x^3+2x^2+3x-12\\ c,=-2x^2+12x-18+5x^2+4x-1=3x^2+16x-19\\ d,=8x^3+1-3x^3+6x^2=5x^3+6x^2+1\\ e,=\left(3x^2+4x+15x+20\right):\left(3x+4\right)\\ =\left(3x+4\right)\left(x+5\right):\left(3x+4\right)\\ =x+5\\ f,=\left(x^3+4x^2-3x+3x^2+12x-9+3x+3\right):\left(x^2+4x-3\right)\\ =\left[\left(x^2+4x-3\right)\left(x+3\right)+3x+3\right]:\left(x^2+4x-3\right)\\ =x+3\left(dư.3x+3\right)\)

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a) P(x) = 7x2 . (x2 – 5x + 2 ) – 5x .(x3 – 7x2 + 3x)

= 7x2 . x2 + 7x2 . (-5x) + 7x2 . 2 – [5x. x3 + 5x . (-7x2) + 5x . 3x]

= 7. (x2 . x2) + [7.(-5)] . (x2 . x) + (7.2).x2  – {5. (x.x3) + [5.(-7)]. (x.x2) + (5.3).(x.x)}

= 7x4 + (-35). x3 + 14x2  – [ 5x4 + (-35)x3 + 15x2 ]

= 7x4 + (-35). x3 + 14x2   - 5x4 + 35x3 - 15x2

= (7x4 – 5x4) + [(-35). x3 + 35x3 ] + (14x2 - 15x2 )

= 2x4 + 0 - x2 

= 2x4 – x2

b) Thay x = \( - \dfrac{1}{2}\) vào P(x), ta được:

P(\( - \dfrac{1}{2}\)) = 2. (\( - \dfrac{1}{2}\))4 –  (\( - \dfrac{1}{2}\))2 \))

 \(\begin{array}{l} = 2.\dfrac{1}{{16}} - \dfrac{1}{4} \\ = \dfrac{1}{8} - \dfrac{{2}}{8} \\ = \dfrac{-1}{8} \end{array}\)