Cho hình bình hành ABCD có BC =2AB và B =60°. GỌI E, F theo thứ tự là trung điểm của BC và AD
a. Chứng minh tứ giác ECDF là hình thoi
b. Chứng minh AED= 90°
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta sẽ có FD//EC và FD = EC = 0.5 AD Þ ECDF là hình bình hành.
Mà A B 1 2 B C
Þ AB = BE = EF = EC
Þ CDFE là hình thoi.
b) Tứ giác ABED là hình thang cân vì BE//AD và B A D ^ = A D E ^ = 60 0
c) Ta có E F = C D = A B = 1 2 C D = 1 2 A D , F là trung điểm AD Þ A E D ^ = 90 0
b: Xét tứ giác ECDF có
DF//EC
DF=EC
Do đó: ECDF là hình bình hành
mà DF=DC
nên ECDF là hình thoi
a: Xét tứ giác BEFA có
BE//AF
BE=FA
BE=BA
=>BEFA là hình thoi
b: góc B=180-60=120 độ
=>góc IBE=60 độ
mà IB=BE
nên ΔIBE đều
=>góc EIB=60 độ=góc A
=>AIEF là hình thang cân
c:
Xét ΔABD có
BF là trung tuyến
BF=AD/2
Do đo: ΔABD vuông tại B
Xét tứ giác BICD có
BI//CD
BI=CD
góc IBD=90 độ
Do đó: BICD là hình chữ nhật
d: Xét ΔAED có
EF là trung tuyến
EF=AD/2
=>ΔAED vuông tại E
=>góc AED=90 độ
a: Xét tứ giác ABEF có
BE//AF
BE=AF
BE=BA
Do đó: ABEF là hình thoi
b: Xét ΔBIE có BI=BE
nên ΔBIE cân tại B
mà góc IBE=60 độ
nên ΔBIE đều
=>góc I=60 độ
Xét tứ giác AFEI có
EF//AI
góc I=góc A
Do đó AFEI là hình thang cân
c: Xét ΔBAD có
BF là đường trung tuyến
BF=AD/2
Do đó: ΔBAD vuông tại B
=>DB vuông góc với BI
Xét tứ giác BICD có
BI//CD
BI=CD
Do đó: BICD là hình bình hành
mà DB vuông góc với BI
nên BICD là hình chữ nhật
d: Xét ΔAED có
EF la trung tuyến
FE=DA/2
Do đó: ΔAED vuông tại E
=>góc AED=90 độ