Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có :
EC // FD
\(EC=FD=\frac{4}{2}BC=\frac{1}{2}AD\)
=> ECDF là hình bình hành
\(EF=AB=\frac{1}{2}BC\)
=> ECDF là hình thoi
b, \(\widehat{A} =60^o\)
\(\Rightarrow D=120^o\)
\(\Rightarrow\widehat{EDF}=120^o:2=60^o\)
Mà BE // AD
==> BEDA là hình thang cân
c, Xét tam giác AFE : AF = EF --- > góc AFE
BEFA là hình thoi
==> AE là tia phân giác của \(\widehat{BAE}\Rightarrow\widehat{EAF}=30^o\)
Mà EDA = 60o
=> Trong tam giác EAD = 180o = \(\widehat{EAF}+\widehat{ADE}+\widehat{EAD}\)
\(=30^o+60^o+\widehat{EAD}\)
\(\Rightarrow\widehat{AED}=60^o\)
b: Xét tứ giác ECDF có
DF//EC
DF=EC
Do đó: ECDF là hình bình hành
mà DF=DC
nên ECDF là hình thoi
Bài 1:
a: Xét tứ giác ECDF có
EC//FD
EC=FD
Do đó: ECDF là hình bình hành
mà FD=DC
nên ECDF là hình thoi
b: Xét tứ giác ABED có EB//AD
nên ABED là hình thang
c: Xét ΔAED có
EF là đường trung tuyến
EF=AD/2
Do đó: ΔAED vuông tại E
a: Xét tứ giác ECDF có
EC//DF
EC=DF
Do đó: ECDF là hình bình hành
mà EC=CD
nên ECDF là hình thoi
a) Ta sẽ có FD//EC và FD = EC = 0.5 AD Þ ECDF là hình bình hành.
Mà A B 1 2 B C
Þ AB = BE = EF = EC
Þ CDFE là hình thoi.
b) Tứ giác ABED là hình thang cân vì BE//AD và B A D ^ = A D E ^ = 60 0
c) Ta có E F = C D = A B = 1 2 C D = 1 2 A D , F là trung điểm AD Þ A E D ^ = 90 0