K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2017

mày kiếm đâu ra bài này

6 tháng 12 2017

nhanh lên nhé

31 tháng 1 2017

Ta có n có thể là chẫn hoặc lẻ

Nếu n chẵn thì n = 2k 

Thay vào ta có : (2k + 4)(2k + 5) = 2.(k + 2)(2k + 5) chia hết cho 2

Nếu n lẻ thì n = 2k + 1

Thay vào ta có: (2k + 5)(2k + 6) = 2.(2k + 5)(k + 3) chia hết cho 2

Vậy với mội số tự nhiên n (n + 4)(n + 5) đều chia hết cho 2

31 tháng 1 2017

Vì tích trên là tích của 2 số tự nhiên liên tiếp nên luôn luôn tận cùng là 0,2.6.

Mà các số có tận cùng là 0,2,6 đều chia hết cho 2 nên tích (n+4)(n+5)luôn luôn chia hết cho 2.

Giải thích các bước giải:

3n+5⋮n+2

⇔3n+6−1⋮n+2

⇔3(n+2)−1⋮n+2

⇔−1⋮n+21)

⇔n+2∈Ư(−1)

⇔n+2∈{−1;1}

⇔n∈{−3;−1}

Vì nn là số tự nhiên nên không có giá trị thõa mãn

⇔n∈{−3;−1}⇔n∈{-3;-1}

Vì nn là số tự nhiên nên không có giá trị thõa mãn

11 tháng 10 2021

Cảm ơn ^^ !!!

12 tháng 11 2016

a, ta có :n+4=n+1+3

n+4chia hết n+1=>n+1+3chia hết cho n+1

mà n+1chia hết cho n+1=>3chia hết cho n+1=>n+1 thuộc ước của 3

9 tháng 12 2018

+) x chẵn => x+4 chẵn=> x+4 chia hết cho 2=> (n+4)(n+5) chia hết cho 2

+) x lẻ => x+5 =>x+....

c2. trong 2 stn liên tiếp chắc chắn sẽ có 1 stn chia hết cho 2 (đpcm)

nên tích trên chia hết cho 2

15 tháng 10 2019

Bài 1

Gọi 3 số tự nhiên liên tiếp là n; n+1; n+2. Tổng của chúng là

n+n+1+n+2=3n+3=3(n+1) chia hết cho 3

Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3. Tổng của chúng là

n+n+1+n+2+n+3=4n+6=4n+4+2=4(n+1)+2 chia cho 4 dư 2

Bài 2

(Xét tính chẵn hoặc lẻ của n)

+ Nếu n lẻ thì n+3 chẵn; n+6 lẻ => (n+3)(n+6) chẵn => chia hết cho 2

+ Nếu n chẵn thì n+3 lẻ, n+6 chẵn => (n+3)(n+6) chẵn => chia hết cho 2

=> (n+3)(n+6) chia hết cho 2 với mọi n

15 tháng 11 2014

d) Ta có: n + 6 chia hết cho n+1

              n+1 chia hết cho n+1

=> [(n+6) - (n+1)] chia hết cho n+1

=> (n+6 - n - 1) chia hết cho n + 1

=> 5 chia hết cho n+1

=> n+1 thuộc { 1; 5 }

Nếu n+1 = 1 thì n = 1-1=0

Nếu n+1=5 thì n= 5-1=4.

Vậy n thuộc {0;4}

15 tháng 11 2014

e) Ta có: 2n+3 chia hết cho n-2 (1)

              n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)

Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2

=> (2n+3 - 2n +4) chia hết cho n-2

=> 7 chia hết cho n-2

Sau đó xét các trường hợp tương tự như phần d.

24 tháng 12 2015

vì n+4 là n+5 là hai số liên tiếp nên 1 trong hai số sẽ chia hết cho 2

=>(n+4).(n+5) chia hết cho 2 (đpcm)