Phân tích đa thức thành nhân tử:
\(x^3-7x-6\)
Làm đc nhiều cách càng tốt nha~
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=x3-7x+6
=x3-2x2+2x2-4x-3x+6
=x2(x-2)+2x(x-2)-3(x-2)
=(x-2)(x2+2x-3)
=(x-2)(x2+2x+1-4)
=(x-2)[(x+1)2-4]
=(x-2)(x+1-2)(x+1+2)=(x-1)(x-2)(x+3)
x3 - 7x + 6
= x3 - 2x2 + 2x2 - 4x - 3x + 6
= x2 ( x - 2 ) + 2x ( x - 2 ) + 3 ( x - 2 )
= ( x2 + 2x + 3 ) ( x - 2 )
= ( x2 + 2x + 1 - 4 ) ( x - 2 )
= [ ( x + 1 )2 - 22 ] ( x - 2 )
= ( x + 1 - 2 ) ( x + 1 + 2 ) ( x - 2 )
= ( x - 1 ) ( x + 3 ) ( x - 2 )
Bài làm :
= x2 - 2x - 4x + 8
= x (x - 2) - 4(x -2)
= (x - 4)(x -2)
= x2 - 6x + 9 - 1
= ( x - 3)2 - 1
=( x -3 - 1)( x- 3 + 1)
= (x - 4)(x -2)
= x2 - 16 - 6x + 24
=( x - 4)(x + 4 ) - 6 (x - 4)
=(x - 4)(x + 4 - 6)
= (x - 4)(x -2)
Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
mình cũng được tròn 3 cách
c1 \(x^2-6x+8=x^2-2x-4x+8=x\left(x-2\right)-4\left(x-2\right)=\left(x-4\right)\left(x-2\right)\)
c2 \(x^2-6x+8=\left(x^2-6x+9\right)-1=\left(x-3\right)^2-1=\left(x-4\right)\left(x-2\right)\)
c3 Gỉa sử \(x^2-6x+8=\left(x+a\right)\left(x+b\right)=x^2+\left(a+b\right)x+ab\)
Cân bằng hệ số ta được \(\hept{\begin{cases}a+b=-6\\ab=8\end{cases}< =>\orbr{\begin{cases}a=-4\\b=-2\end{cases}or\orbr{\begin{cases}a=-2\\b=-4\end{cases}}}}\)
Vậy ta có : \(\left(x+a\right)\left(x+b\right)=\left(x-2\right)\left(x-4\right)\)
a) ở lop 8 đã được học hằng đẳng thức a^3+b^3+c^3 rùi. áp dụng vào bài này thì ta có
a^3+b^3+c^3-3abc=(a^3+b^3+c^3)-3abc=(a+b+c).[a^2+b^2+c^2-(ab+ac+bc)]+3abc-3abc=(a+b+c)[a^2+b^2+c^2-(ab+ac+bc)]
mai hương làm đúng rùi nhưng ở bước cuối bạn viết nhầm. là -ab chứ ko phải là -3ab
a) Ta có : x2 + 7x + 12
= x2 + 3x + 4x + 12
= (x2 + 3x) + (4x + 12)
= x(x + 3) + 4(x + 3)
= (x + 4)(x + 3)
Bạn ơi mk nhầm đề rồi số 30 thay bằng số 60 còn 36 thay bằng 72 và 39 thay bằng 75 nha
Ta có `:`
`x^3 - 7x-6`
`= x^3 - 9x + 2x - 6`
`= x( x^2 - 9 ) + 2( x-3 )`
`= x( x-3 )( x + 3 ) + 2( x-3 )`
`= [ x( x + 3 )+2]( x-3 )`
`= ( x^2 + 3x + 2 )( x-3 )`
`= ( x^2 + 2x + x + 2 )( x-3 )`
`= [x( x+2 ) + ( x + 2 )]( x-3 )`
`= ( x+1)(x+2)(x-3)`
Ta có:
x4+2x3+x2+x+1=(x2)2+2.x2.x+x2+x+1
=(x2+x)+(x+1)
=x2+2x+1
=(x+1)2
x3 + 7x - 6
= x3 - x - 6x - 6
= x3 - x - 6 (x+1)
= x (x2 - 1) - 6 (x+1)
= (x + 1) ( x (x - 1) - 6 )
= ( x + 1) ((x2 - x - 6))
= (x + 1) ((x2 + 2 - 3 - 6))
= (x + 1) (x(x +2) - 3 ( x + 2))
= (x + 1)(x + 2)(x + 3)
\(12x^2+7x-12=12x^2-5x+12x-12\)
\(=x\left(12x-5\right)+12\left(x-1\right)\)
Đề sai rồi bạn ời
\(x^3-7x-6\)
\(=x^3+2x^2-2x^2-4x-3x-6\)
\(=x^2\left(x+2\right)-2x\left(x+2\right)-3\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-2x-3\right)\)
\(=\left(x+2\right)\left(x^2+x-3x-3\right)\)
\(=\left(x+2\right)\left[x\left(x+1\right)-3\left(x+1\right)\right]\)
\(=\left(x+2\right)\left(x+1\right)\left(x-3\right)\)
Ta có:\(x^3-7x-6=\left(x^3-3x^2\right)+\left(3x^2-9x\right)+\left(2x-6\right)\)
\(=\left(x-3\right)\left(x^2+3x+2\right)=\left(x-3\right)\left(x^2+2x+x+2\right)\)
\(=\left(x-3\right)\left(x+2\right)\left(x+1\right)\)
=x3-x-6x-6
=(x3-x)-(6x-6)
=x(x2-1)-6(x-1)
=x(x-1)(x+1)-6(x-1)
=(x-1)(x2+1-6)