Cho \(a;b;c\in\left[1;2\right]\)
CMR: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le10\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 120 chia hết cho a
300 chia hết cho a
420 chia hết cho a
=> a \(\in\)ƯC(120,300.420)
Ta có:
120 = 23.3.5
300 = 22.3.52
420 = 22.3.5.7
UCLN(120,300,420) = 22.3.5 = 60
UC(120,300,420) = Ư(60) = {1;2;3;4;5;6;10;12;15;20;30;60}
Vì a > 20 nên a = {30;60}
b) 56 chia hết cho a
560 chia hết cho a
5600 chia hết cho a
=>a \(\in\)ƯC(56,560,5600)
Ta có:
56 = 23.7
560 = 24.5.7
5600 = 25.52.7
UCLN(56,560,5600) = 23.7 = 56
UC(56,560,5600) = Ư(56) = {1;2;4;7;8;14;28;56}
Vì a lớn nhất nên a = 56
Nếu chia hết cho 2 và 5, không chia hết cho 9 thì chỉ có 0 thôi, nhưng nếu mà chia hết cho cả 3 thì đề sai r đó
A = 200*
Mà A chia hết cho 2 và 5, các số chia hết cho 2 và 5 thì có chữ số tận cùng là 0
NHƯNG nếu dấu sao là 0 thì có số 2000, mà 2000 ko chia hết cho 3.
Như vậy, đề sai.
ta co
(a+b+c)(\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\))<=10
<=>\(\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\)(1)\(\le7\)
That vay ta co
Do a,b,c co vai tro nhu nhau nen ta gia su a>=b>=c
=>(a-b)(b-c)>=0
=> ab+bc>=b2+ac
Do a,b,c khac 0
=>\(\hept{\begin{cases}1+\frac{c}{a}\ge\frac{b}{a}+\frac{c}{b}\\1+\frac{a}{c}\ge\frac{b}{c}+\frac{a}{b}\end{cases}}\)
=> 2+2(\(\frac{c}{a}+\frac{a}{c}\))>=(1)
Do a,b,c thuoc [1;2]
=> a/c<=2; c/a<=1/2
=>\(\frac{a}{c}+\frac{c}{a}\le\frac{5}{2}\)
=>\(\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\le7\)
=> (a+b+c)(1/a+1/b+1/c)<=10
Ta có (a+b+c)(1/a+1/b+1/c)=3+a/b + a/c + b/a + b/c + c/a + c/b ≤ 10
<=> a/b+b/a+b/c+c/a+c/b ≤ 7
Giả sử 1 ≤ c ≤ b ≤ a ≤ 2 thì:
(1 - a/b)(1 - b/c) + (1 - b/a)(1 - c/b) ≥ 0
<=> 2 + a/c + c/a ≥ a/b + b/a + b/c + c/b
<=> 2+2(a/c+c/a) ≥ a/b + a/c + b/a + b/c + c/a + c/b
Do 1≤ a,c ≤2
=> 1/2≤ a/c ≤ 2
=> (a/c-2)(a/c-1/2) ≤ 0
=> a/c+c/a ≤ 5/2
Mà 2+2(a/c+c/a) ≥ a/b + a/c + b/a + b/c + c/a + c/b
=> 7 ≥ a/b + a/c + b/a + b/c + c/a + c/b
=> (a+b+c)(1/a+1/b+1/c) ≤ 10