cho tam giác ABC. Vẽ cung tròn tân C bán kính=AB, cung tròn tâm B bán kính bằng AC. Hai cung tròn trên cắt nhau ở D ( A và D thuộc 2 nửa mp̉ đối nhau bờ BC). Chứng minh CD // AB và BD // AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có AH = AD và AB \(\perp\)DH nên AB là đường trung trực của đoạn thẳng DH
=> BD = BH => \(\Delta\)DBH cân
Vậy \(\Delta\)DBH cân (đpcm)
b) D là trung điểm của AC nên AD = \(\frac{1}{2}\)AC
=> AC = 2AD = 2AB = 2.5 = 10 (cm) => AB = 5 (cm)
\(\Delta\)ABC vuông tại A nên AB2 + AC2 = BC2 (theo định lý Pythagoras)
Thay số: 52 + 102 = BC2 => BC2 =125 => BC = \(\sqrt{125}\)
Vậy BC = \(5\sqrt{5}\)cm
c) Cung tròn tâm D có bán kính bằng BC nên BC = DE ( DE là bán kính của đường tròn tâm D)
Từ giả thiết suy ra CD = DA = AH => AC = DH
Xét \(\Delta\)ABC và \(\Delta\)HED có:
AC = HD (cmt)
BC = ED (cmt)
Do đó \(\Delta\)ABC = \(\Delta\)HED ( 2cgv)
=> AB = HE (hai cạnh tương ứng)
Mà AB = AD (cùng bằng nửa AC)
=> AD = HE (đpcm)
d) Dễ thấy \(\Delta\)ABD và \(\Delta\)ABH vuông cân nên ^DBA = ^ABH = 450
=> ^DBH = 900
Dễ chứng minh: ^EHB = ^CDB = 1350
Xét \(\Delta\)CDB và \(\Delta\)EHB có:
CD = HE (cùng bằng AD)
^EHB = ^CDB (cmt)
BD = BH (câu a)
Do đó \(\Delta\)CDB = \(\Delta\)EHB (c.g.c)
=> BC = BE (hai cạnh tương ứng) (1)
và ^EBH = ^CBD
=> ^DBH = ^DBE + ^EBH = ^DBE + ^CBD = ^EBC = 900 (2)
Từ (1) và (2) suy ra BEC vuông cân tại B (đpcm)