Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Hình vẽ cậu tự vẽ nhé)
Xét tam giác CAB và tam giác DAB có:
CA=DA (gt)
CB=DB (gt)
AB cạnh chung.
=> tam giác CAB= tam giác DAB (c.c.c)
=> góc CAB= góc BAD (2 góc tương ứng)
mà AB nằm trong CAD nên AB là phân giác của góc CAD.
Nếu đúng thì tk cho mình nhé. Cảm ơn bạn <3
a) Ta có AH = AD và AB \(\perp\)DH nên AB là đường trung trực của đoạn thẳng DH
=> BD = BH => \(\Delta\)DBH cân
Vậy \(\Delta\)DBH cân (đpcm)
b) D là trung điểm của AC nên AD = \(\frac{1}{2}\)AC
=> AC = 2AD = 2AB = 2.5 = 10 (cm) => AB = 5 (cm)
\(\Delta\)ABC vuông tại A nên AB2 + AC2 = BC2 (theo định lý Pythagoras)
Thay số: 52 + 102 = BC2 => BC2 =125 => BC = \(\sqrt{125}\)
Vậy BC = \(5\sqrt{5}\)cm
c) Cung tròn tâm D có bán kính bằng BC nên BC = DE ( DE là bán kính của đường tròn tâm D)
Từ giả thiết suy ra CD = DA = AH => AC = DH
Xét \(\Delta\)ABC và \(\Delta\)HED có:
AC = HD (cmt)
BC = ED (cmt)
Do đó \(\Delta\)ABC = \(\Delta\)HED ( 2cgv)
=> AB = HE (hai cạnh tương ứng)
Mà AB = AD (cùng bằng nửa AC)
=> AD = HE (đpcm)
d) Dễ thấy \(\Delta\)ABD và \(\Delta\)ABH vuông cân nên ^DBA = ^ABH = 450
=> ^DBH = 900
Dễ chứng minh: ^EHB = ^CDB = 1350
Xét \(\Delta\)CDB và \(\Delta\)EHB có:
CD = HE (cùng bằng AD)
^EHB = ^CDB (cmt)
BD = BH (câu a)
Do đó \(\Delta\)CDB = \(\Delta\)EHB (c.g.c)
=> BC = BE (hai cạnh tương ứng) (1)
và ^EBH = ^CBD
=> ^DBH = ^DBE + ^EBH = ^DBE + ^CBD = ^EBC = 900 (2)
Từ (1) và (2) suy ra BEC vuông cân tại B (đpcm)
cac bn giup mk vs nhe mk dang can gap