K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2017

a) ƯCLN(4n+1; 5n+1) = 1

Gọi UCLN(4n+1; 5n+1) = d

\(\Rightarrow\hept{\begin{cases}4n+1⋮d\\5n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}5.\left(4n+1\right)⋮d\\4.\left(5n+1\right)⋮d\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}20n+5⋮d\\20n+4⋮d\end{cases}}\)

\(\Rightarrow\left(20n+5\right)-\left(20n+4\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

\(\RightarrowƯCLN\left(4n+1;5n+1\right)=1\)

b) UCLN(2n+1;2n+3) =1

Gọi UCLN(2n+1; 2n+3) = d

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\2n+3⋮d\end{cases}}\)

\(\Rightarrow\left(2n+1\right)-\left(2n+3\right)⋮d\)

\(\Rightarrow2⋮d\Rightarrow d\inƯ\left(2\right)=\left\{1;2\right\}\)

Nếu d = 2 thì \(2n⋮2\)

Nhưng 3 không chia hết cho 2, Vậy k thoả màn điều kiện chia hết cho d

Nếu d = 1 => Thoả mãn điều kiện chia hết 

=> UCLN(2n+1; 2n+3) = 1

c) n.(n+5) chia hết cho 2 vs mọi n thuộc N

Th1: n là số chẵn

=> n + 5 là số lẻ

=> chẵn . lẻ = chẵn chia hết cho 2

Th2: n là số lẻ

=> n + 5 là số chẵn

=> chẵn . lẻ = chẵn chia hết cho 2

Vậy vs mọi n thuộc N, n(n + 5) chia hết cho 2

THANKS!!!!!!!!!!!!!!!!!!!!!!!

24 tháng 12 2020

Gọi \(\left(4n+1,5n+1\right)=d\left(d\inℕ^∗\right)\)

Ta có \(4n+1⋮d\Rightarrow20n+5⋮d\)

\(5n+1⋮d\Rightarrow20n+4⋮d\)

Suy ra : \(20n+5-20n+4⋮d\Rightarrow1⋮d\)hay \(d=1\)

Vậy \(ƯCLN\left(4n+1;5n+1\right)=1\)

30 tháng 10 2021

\(1,\\ a,Gọi.ƯCLN\left(n,n+1\right)=d\\ \Rightarrow n⋮d;n+1⋮d\\ \Rightarrow n+1-n⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d=1\)

Vậy \(ƯCLN\left(n,n+1\right)=1\)

30 tháng 10 2021

còn nx honggggg

7 tháng 12 2017

Gọi d là ước chung lớn nhất của 4n + 1 và 5n + 1.
Suy ra \(\hept{\begin{cases}4n+1⋮d\\5n+1⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}5\left(4n+1\right)⋮d\\4\left(5n+1\right)⋮d\end{cases}}}\).
Suy ra \(5\left(4n+1\right)-4\left(5n+1\right)⋮d\Leftrightarrow1⋮d\).
Vậy d = 1.

25 tháng 2 2020

mk cx hok bồi nek

sao thấy đề bồi này nó cứ dễ sao ấy

14 tháng 12 2020

Mình chỉ tạm thời trả lời câu c thôi:

+ Nếu n là số chẵn thì n là số chẵn sẽ chia hết cho 2

suy ra: n.(n+5) sẽ chia hết cho 2                    (1)

+ Nếu n là số lẻ thì n+5 là số chẵn sẽ chia hết cho 2

suy ra: n.(n+5) sẽ chia hết cho 2                   (2)

 Vậy: từ 1 và 2 ta chứng minh rằng tích n.(n+5) luôn luôn chia hết cho 2 với mọi số tự nhiên n

\(A=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)

\(=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{45}\right)+\left(\frac{1}{46}+...+\frac{1}{60}\right)>\frac{1}{45}.15+\frac{1}{60}.15=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)

=>đpcm

l-i-k-e cho mình nha

9 tháng 3 2017

vì sao lại thế

27 tháng 3 2022

\(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};...;\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

Cộng vế với vế ta được 

\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{99}{100}< 1\)

Vậy ta có đpcm 

14 tháng 6 2021

VT `=1+tan^2 α`

`=1+ (sin^2α)/(cos^2α)`

`= (cos^2α+sin^2α)/(cos^2α)`

`= 1/(cos^2α)`

14 tháng 6 2021

a, \(1+tan^2a=\dfrac{1}{\cos^2a}\)

ĐT \(\Leftrightarrow\cos^2a\left(1+\tan^2a\right)=1\)

\(\Leftrightarrow\cos^2a+\cos^2a.\tan^2a=1\)

\(\Leftrightarrow\cos^2a.\dfrac{\sin^2a}{\cos^2a}+\cos^2a=\sin^2a+\cos^2a=1\) ( ĐT đã có )

=> ĐPCM

Vậy ...