K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2021

VT `=1+tan^2 α`

`=1+ (sin^2α)/(cos^2α)`

`= (cos^2α+sin^2α)/(cos^2α)`

`= 1/(cos^2α)`

14 tháng 6 2021

a, \(1+tan^2a=\dfrac{1}{\cos^2a}\)

ĐT \(\Leftrightarrow\cos^2a\left(1+\tan^2a\right)=1\)

\(\Leftrightarrow\cos^2a+\cos^2a.\tan^2a=1\)

\(\Leftrightarrow\cos^2a.\dfrac{\sin^2a}{\cos^2a}+\cos^2a=\sin^2a+\cos^2a=1\) ( ĐT đã có )

=> ĐPCM

Vậy ...

21 tháng 10 2021

A

21 tháng 10 2021

Chọn A

28 tháng 6 2021

\(sin\alpha^2+cos\alpha^2=1\Rightarrow sin\alpha^2=1-cos\alpha^2=1-\dfrac{1}{25}=\dfrac{24}{25}\Rightarrow sin\alpha=\dfrac{2\sqrt{6}}{5}\)

\(\Rightarrow cot\alpha=\dfrac{cos\alpha}{sin\alpha}=\dfrac{1}{5}:\dfrac{2\sqrt{6}}{5}=\dfrac{1}{2\sqrt{6}}=\dfrac{\sqrt{6}}{24}\)

\(\sin^2\alpha+\cos^2\alpha=1\)

\(\Leftrightarrow\sin^2\alpha=1-\dfrac{1}{25}=\dfrac{24}{25}\)

hay \(\sin\alpha=\dfrac{2\sqrt{6}}{5}\)

\(\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{2\sqrt{6}}{5}:\dfrac{1}{5}=2\sqrt{6}\)

\(\cot\alpha=\dfrac{1}{2\sqrt{6}}=\dfrac{\sqrt{6}}{12}\)

NV
3 tháng 9 2020

\(\frac{1-tana}{1+tana}=\frac{1-\frac{sina}{cosa}}{1+\frac{sina}{cosa}}=\frac{\frac{1}{cosa}\left(cosa-sina\right)}{\frac{1}{cosa}\left(cosa+sina\right)}=\frac{cosa-sina}{cosa+sina}\)

a: \(\dfrac{\cos\alpha}{1-\sin\alpha}=\dfrac{1+\sin\alpha}{\cos\alpha}\)

\(\Leftrightarrow\cos^2\alpha=1-\sin^2\alpha\)(đúng)

b: Ta có: \(\dfrac{\left(\sin\alpha+\cos\alpha\right)^2-\left(\sin\alpha-\cos\alpha\right)^2}{\sin\alpha\cdot\cos\alpha}\)

\(=\dfrac{4\cdot\sin\alpha\cdot\cos\alpha}{\sin\alpha\cdot\cos\alpha}\)

=4

29 tháng 8 2021

Cos^2(a) = 1/(1+tan^2(a)) = 4/13

--> cosa = 2sqrt(13)/13

Sin^2(a)=1-4/13=9/13

--> sina = 3sqrt(13)/13

29 tháng 8 2021

Cota = 2/3 --> tana = 3/2

 

21 tháng 7 2021

`sin^2 α+cos^2α=1`

`<=> (2/3)^2+cos^2α=1`

`=> cosα= \sqrt5/3`

`=> tan α=(sinα)/(cosα) = (2\sqrt5)/5`

`=> cota = 1/(tanα)=sqrt5/2`

4 tháng 8 2021

`sin^2 α+cos^2 α =1`

`=> sinα =\sqrt(1-cos^2α)=\sqrt(1-(3/4)^2) = \sqrt7/4`

`=> tanα=(sinα)/(cosα)=(3\sqrt7)/7`

`=> cotα=1/(tanα)=\sqrt7/3`

4 tháng 8 2021

Đề bài cho cos rồi tính cos làm gì nhỉ =))) Mình tính sin thay vào chỗ đấy nhé.

-------------------------------------------------------------------------------------------------------

\(cos\alpha=\dfrac{3}{4}\Rightarrow cos^2\alpha=\dfrac{9}{16}\)

Mà \(sin^2\alpha+cos^2\alpha=1\)

\(\Rightarrow sin^2\alpha=1-cos^2\alpha=1-\dfrac{9}{16}=\dfrac{7}{16}\)

\(\Rightarrow cos\alpha=\dfrac{\sqrt{7}}{4}\\ \Rightarrow tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{\dfrac{3}{4}}{\dfrac{\sqrt{7}}{4}}=\dfrac{3\sqrt{7}}{7}\\ \Rightarrow cot\alpha=\dfrac{1}{tan\alpha}=\dfrac{\sqrt{7}}{3}\)