cmr số A=4014025 không phải là số chính phương
nhanh nhé mình tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nếu \(A⋮b\) mà \(A⋮̸b^2\)\((A\) là số nguyên tố\()\)
\(\Rightarrow A\) không là số chính phương
tương tự vì A \(⋮5\) mà \(A⋮̸25\)
vây A ko phải là số chính phương
Ta có:
2003^2=4012009
2004^2=4016016
=>2003^2<4014025<2004^2
=>4014025 không phải là số chính phương
4014025 không phải là số chính phương vì không viết được dưới dạng \(a^2\)(với a là số nguyên)
Câu trả lời hay nhất: 4014025 = 25.160561
Muốn 401025 chính phương thì 160561 phải là số chính phương.
400^2 = 160000
401^2 = 160801 Mà 160000 < 160561 < 160801
=> 160561 ko phải là số chính phương
k cho mk nha
Ta có : S = 1 + 3 + 32 + ... + 398
=> 3S = 3 + 32 + 33 + .... + 399
Khi đó 3S - S = (3 + 32 + 33 + .... + 399) - (1 + 3 + 32 + ... + 398)
=> 2S = 399 - 1 = 396.33 - 1 = (34)24.(...7) - 1 = (...1)24.(...7) - 1 = (...7) - 1 = (....6)
=> S = (...3)
=> S không là số chính phương (Vì S có chữ số tận cùng là 3)
\(\text{Gọi: }i=\left(a,c\right)\Rightarrow a=ia';c=ic'\left(với\left(a',c'\right)=1\right)\Rightarrow a'b=c'd\Rightarrow b\text{ chia hết cho c}'\)
\(d\text{ chia hết cho a}'\Rightarrow b=c'l;d=a'k\left(l,k\text{ tự nhiên}\right)\Rightarrow a'c'l=a'c'k\Rightarrow l=k\Rightarrow\)
\(b=c'l;d=a'l\Rightarrow A=\left(l+i\right)\left(c'+a'\right)\text{ là hợp số}\)
b) Ta có: A = \(10^{2012}+10^{2011}+10^{2010}+10^{2009}+8\) \(=\left(.....0\right)+\left(.....0\right)+\left(.....0\right)+\left(.....0\right)+8=\left(.....8\right)\)
\(\Rightarrow\) A có tận cùng là 8
Mà số chính phương không có tận cùng là 8 nên A không phải số chính phương (đpcm)
Câu trả lời hay nhất: 4014025 = 25.160561
Muốn 401025 chính phương thì 160561 phải là số chính phương.
400^2 = 160000
401^2 = 160801 Mà 160000 < 160561 < 160801
=> 160561 ko phải là số chính phương
k cho mk nha