cho tam giác ABC có ^BAC=120 độ. Trên tia phăn giác của góc BAC lấy điểm D sao cho AD=AB. Trên tia đối của tia AB lấy điểm E sao cho AE=AC . Nối DE a) Chứng minh tam giác ABC= tam giác ADE b)tia phân giác của ^EAC cắt EC tại M. Chứng minh đường thẳng AM là đường trung trực của đoạn thẳng EC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔAED có
AB=AE
góc BAD=góc EAD
AD chung
=>ΔABD=ΔAED
=>DB=DE
b: Xét ΔDBF và ΔDEC có
DB=DE
góc DBF=góc DEC
BF=EC
=>ΔDBF=ΔDEC
=>góc BDF=góc EDC
=>góc BDF+góc BDE=180 độ
=>F,D,E thẳng hàng
c: Xét ΔAFC có AB/BF=AE/EC
nên BE//CF
d: Xét ΔABC và ΔAEF có
AB=AE
góc BAC chung
AC=AF
=>ΔABC=ΔAEF
Cho tam giác ABC, AB<AC.Tia p/g của góc A cắt BC ở D, trên tia AC lấy điểm E sao cho AE=AB. Gọi tia M là giao điểm của AB va DE
Cmr: a) tam giác ABD=tam giacd AED
b) tam giacd DBM=tam giác DEC
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
Suy ra: DB=DE và \(\widehat{ABD}=\widehat{AED}\)
hay \(\widehat{DBF}=\widehat{DEC}\)
Xét ΔDBF và ΔDEC có
\(\widehat{DBF}=\widehat{DEC}\)
DB=DE
\(\widehat{BDF}=\widehat{EDC}\)
Do đó: ΔDBF=ΔDEC
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
=>ΔABC=ΔADE
b: ΔACE vuông cân tại A
=>góc ACE=45 độ
c: DE=BC=căn 12^2+16^2=20cm