chung minh bat dang thuc 2(a^4+1) + (b^2 +1)^2>=2(ab+1)^2
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
K
1
7 tháng 10 2017
a/ x2 + xy + y2 + 1
= [x2 + 2.x.\(\dfrac{y}{2}\) + (\(\dfrac{y}{2}\) )2 ] + \(\dfrac{3y^2}{4}\) + 1
= ( x + \(\dfrac{y}{2}\) )2 + \(\dfrac{3y^2}{4}\) + 1
Vì \(\left(x+\dfrac{y}{2}\right)^2\) \(\ge\) 0 với mọi x;y
và \(\dfrac{3y^2}{4}\ge0\) với mọi x;y
=> \(\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}\ge0\) với mọi x;y
=> \(\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1>0\)
7 tháng 4 2017
\(a^2+b^2\ge2ab\)
\(\Rightarrow a^2-2ab+b^2\ge0\)
\(\Rightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Vậy \(a^2+b^2\ge2ab\)
Áp dụng vào ta được :
\(a^2+1\ge2a\)
\(b^2+1\ge2b\)
\(c^2+1\ge2c\)
\(\Rightarrow\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\)(ĐPCM)
VI
0
VT
0