K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2017

x^2 + 6x + 5 = 0 
<=>x^2 + x + 5x +5 = 0 
<=>x(x + 1) + 5(x + 1) = 0 
<=>(x + 1)(x + 5) = 0 
<=> x + 1 =0 hoặc x + 5 =0 
<=> x = -1 hoặc x = -5

28 tháng 11 2017

x2 + 6x + 5 = 0

x2 + 5x + x  + 5 = 0

( x2 + 5x ) + ( x + 5 ) = 0

x ( x + 5 ) + ( x + 5 ) = 0

( x + 1 ) ( x + 5 ) = 0

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+5=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-5\end{cases}}\)

Vậy \(x\in\left\{-1;-5\right\}\)

24 tháng 4 2021

a) Ta có: \(\Delta'=(\frac{6}{2})^2-m\)

                    \(=9-m\)

Để phương trình có 2 nghiệm phân biệt thì:

\(\Delta>0\)

\(\Rightarrow 9-m>0\)

\(\Leftrightarrow m<9\)

Vậy khi m < 9 thì phương trình có 2 nghiệm phân biệt

b)Theo định lí Vi-ét ta có:

\(x_1.x_2=\frac{-m}{1}=-m(1)\)

\(x_1+x_2=\frac{-6}{1}=-6\)

Lại có \(x_1=2x_2\)

\(\Rightarrow3x_2=-6\)

\(\Leftrightarrow x_2=-2\)

\(\Rightarrow x_1=-4\)

Thay x1;x2 vào (1) ta được 

\(8=m\)

Vậy m-8 thì x1=2x2

 

 

24 tháng 4 2021

Ở trên có đoạn mình đánh lộn  \(\Delta'\) ra \(\Delta\) nhé

16 tháng 10 2021

\(ĐK:x\in R\)

Đặt \(x^2-2x=a\), PTTT:

\(-a+\sqrt{6a+7}=0\\ \Leftrightarrow\sqrt{6a+7}=a\\ \Leftrightarrow a^2-6a-7=0\\ \Leftrightarrow\left[{}\begin{matrix}a=7\\a=-1\left(loại.do.a=\sqrt{6a+7}\ge0\right)\end{matrix}\right.\\ \Leftrightarrow a=7\\ \Leftrightarrow x^2-2x-7=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1+2\sqrt{2}\\x=1-2\sqrt{2}\end{matrix}\right.\)

 

11 tháng 2 2018

a) Ta có: \(3x-4=5-6x\)

\(\Leftrightarrow3x+6x=5+4\)

\(\Leftrightarrow9x=9\)

\(\Leftrightarrow x=1\)

Vậy \(S=\left\{1\right\}\)

b) \(\left(2x-3\right)\left(x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-3=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=3\\x=0+4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{3}{2}\\x=4\end{cases}}}\)

Vậy \(S=\left\{\frac{3}{2};4\right\}\)

c) \(x^3-7x^2+x-7=0\)

\(\Leftrightarrow x^2\left(x-7\right)+\left(x-7\right)=0\)

\(\Leftrightarrow\left(x-7\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-7=0\\x^2+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x\in\varnothing\end{cases}}}\)

Vậy S = {7}

11 tháng 2 2018

3x - 4 = 5 - 6x

<=> 3x - 4 - 5 + 6x = 0

<=> 9x - 9 = 0

<=> 9x      = 9

<=>   x      = 1

Vậy phương trình có nghiệm duy nhất là x = 1

( 2x - 3 ) ( x - 4 ) = 0

\(\Leftrightarrow\orbr{\begin{cases}2x-3=0\\x-4=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=4\end{cases}}\)

Vậy phương trình có tập nghiệm là S = { 3/2 ; 4 }

x3 - 7x2 + x - 7 = 0

<=> x2 ( x - 7 ) + ( x - 7 ) = 0

<=> ( x2 + 1 )( x - 7 ) = 0

\(\Leftrightarrow\orbr{\begin{cases}x^2+1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2=-1\left(l\text{oại}\right)\\x=7\end{cases}}\Leftrightarrow x=7\)

Vậy phương trình có nghiệm là x = 7 

1 tháng 1 2018

\(\text{a) }\left(x^2+x\right)^2+4\left(x^2+x\right)=12\\ \Leftrightarrow\text{Đặt }x^2+x=y\\ \Leftrightarrow y^2+4y=12\\ \Leftrightarrow y^2+6y-2y-12=0\\ \Leftrightarrow\left(y^2+6y\right)-\left(2y+12\right)=0\\ \Leftrightarrow y\left(y+6\right)-2\left(y+6\right)=0\\ \Leftrightarrow\left(y+6\right)\left(y-2\right)=0\\ \Leftrightarrow\left(x^2+x+6\right)\left(x^2+x-2\right)=0\\ \Leftrightarrow\left(x^2+x+\dfrac{1}{4}+\dfrac{23}{4}\right)\left(x^2+2x-x-2\right)=0\\ \Leftrightarrow\left[\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{23}{4}\right]\left[\left(x^2+2x\right)-\left(x+2\right)\right]=0\\ \Leftrightarrow\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{23}{4}\right]\left[x\left(x+2\right)-\left(x+2\right)\right]=0\\ \Leftrightarrow\left(x-1\right)\left(x+2\right)=0\left(Vì\text{ }\left(x+\dfrac{1}{2}\right)^2+\dfrac{23}{4}\ne0\right)\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\\ \text{Vậy }S=\left\{1;-2\right\}\\ \)

\(\text{b) }6x^4-5x^3-38x^2-5x+6=0\\ \Leftrightarrow x^2\left(6x^2-5x-38-\dfrac{5}{x}+\dfrac{6}{x^2}\right)=0\\ \Leftrightarrow x^2\left[\left(6x^2+12+\dfrac{6}{x^2}\right)-\left(5x+\dfrac{5}{x}\right)-50\right]=0\\ \Leftrightarrow x^2\left[6\left(x^2+2+\dfrac{1}{x^2}\right)-5\left(x+\dfrac{1}{x}\right)-50\right]=0\\ \Leftrightarrow x^2\left[6\left(x+\dfrac{1}{x}\right)^2-5\left(x+\dfrac{1}{x}\right)-50\right]=0\\ \text{Đặt }x+\dfrac{1}{x}=y\\ \Leftrightarrow x^2\left(6y^2-5y-50\right)=0\\ \Leftrightarrow x^2\left(6y^2-20y+15y-50\right)=0\\ \Leftrightarrow x^2\left[\left(6y^2-20y\right)+\left(15y-50\right)\right]=0\\ \Leftrightarrow x^2\left[2y\left(3y-10\right)+5\left(3y-10\right)\right]=0\\ \Leftrightarrow x^2\left(2y+5\right)\left(3y-10\right)=0\\ \Leftrightarrow x^2\left(2x+\dfrac{2}{x}+5\right)\left(3x+\dfrac{3}{x}-10\right)=0\\ \Leftrightarrow\left(2x^2+2+5x\right)\left(3x^2+3-10x\right)=0\\ \Leftrightarrow\left(2x^2+4x+x+2\right)\left(3x^2-9x-x+3\right)=0\\ \Leftrightarrow\left[\left(2x^2+4x\right)+\left(x+2\right)\right]\left[\left(3x^2-9x\right)-\left(x-3\right)\right]=0\\ \Leftrightarrow\left[2x\left(x+2\right)+\left(x+2\right)\right]\left[3x\left(x-3\right)-\left(x-3\right)\right]=0\\ \Leftrightarrow\left(2x+1\right)\left(x+2\right)\left(3x-1\right)\left(x-3\right)=0\\ \)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=0\\x+2=0\\3x-1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-1\\x=-2\\3x=1\\x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-2\\x=\dfrac{1}{3}\\x=3\end{matrix}\right.\\ \text{Vậy }S=\left\{-\dfrac{1}{2};-2;\dfrac{1}{3};3\right\}\)

c) \(x^2-6x+8=0\\ < =>x^2-2x-4x+8=0\\ < =>\left(x^2-2x\right)-\left(4x-8\right)=0\\ < =>x\left(x-2\right)-4\left(x-2\right)=0\\ < =>\left(x-2\right)\left(x-4\right)=0\\ \left\{\begin{matrix}x-2=0\\x-4=0\end{matrix}\right.=>\left\{\begin{matrix}x=2\\x=4\end{matrix}\right.\)

Vậy: tập nghiệm của pt là S= {2;4}.

a) \(x^2-4x+1=0\\ < =>\left(x^2-4x+4\right)-3=0\\ < =>\left(x-2\right)^2-3=0\\ < =>\left(x-2\right)^2=3\\ =>\left(x-2\right)=\sqrt{3}hoặc\left(x-2\right)=-\sqrt{3}\)

+) x-2= \(\sqrt{3}\) => x= \(\sqrt{3}+2\)

+) x-2 = \(-\sqrt{3}\)=> x= \(-\sqrt{3}+2\)

Vậy: tập nghiệm của pt là S= { \(-\sqrt{3}+2;\sqrt{3}+2\)}

28 tháng 6 2019

Nhận thấy x = 0 không phải là nghiệm.

Xét x khác 0.Chia hai vế của pt cho x2 ta được:

\(x^2-3x-6+\frac{3}{x}+\frac{1}{x^2}=0\)

\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)-3\left(x-\frac{1}{x}\right)-6=0\)

Đặt \(x-\frac{1}{x}=a\). PT trở thành:

\(a^2-3a-4=0\Leftrightarrow\left[{}\begin{matrix}a=4\\a=-1\end{matrix}\right.\)

Với a = 4 thì \(x=4+\frac{1}{x}=\frac{4x+1}{x}\Leftrightarrow x^2-4x-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2+\sqrt{5}\\x=2-\sqrt{5}\end{matrix}\right.\) (nghiệm xấu chút nhưng dễ giải lắm ạ)

Với a = -1 thì \(x=\frac{1}{x}-1=\frac{1-x}{x}\Leftrightarrow x^2+x-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1+\sqrt{5}}{2}\\x=\frac{-1-\sqrt{5}}{2}\end{matrix}\right.\) (cái này thì max xấu rồi ;( )

28 tháng 6 2019

tth gioir :)