Tìm x, biết
x^2 + x -1=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{x}\left(\sqrt{x}-1\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
b) \(\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-2=0\\\sqrt{x}+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\\sqrt{x}=-3\left(vôlí\right)\end{cases}}\)
c) \(\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x}+1=0\\\sqrt{x}+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=-1\left(vôlí\right)\\\sqrt{x}=-3\left(vôlí\right)\end{cases}}\)
1)Tìm x
a) (x+1)(x-2)<0
=>Có 2TH:
TH1:
x+1<0=>x< -1
x-2>0=>x>2
=>Vô lí
TH2:
x+1>0=>x> -1
x-2<0=>x<2
=> -1<x<2
Vậy x thuộc {0;1}
b) Tương tự a thôi ạ.
c) (x-2)(3x+2)
=> Có hai TH:
TH1:
x-2<0=>x<2
3x+2<0=>3x< -2=>x< -2/3
=>x< -2/3
TH2:
x-2>0=>x>2
3x+2>0=>3x> -2=>x> -2/3
=>x>2
Vậy x< -2/3 hoặc x>2
2)Tìm x
x.x=x
<=>x²-x=0
<=>x(x-1)=0
<=>x=0 hoặc x=1
Các bạn giúp mình giải với nhé! Đúng thì mình k đúng nhé. Cảm ơn các bạn nhiều lắm. Yêu cả nhà.
\(1.\left(x-5\right)^{23}.\left(y+2\right)^7=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0\\\left(y+2\right)^7=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0^{23}\\\left(y+2\right)^7=0^7\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x-5=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0+5\\y=0-2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)
Vậy \(\left(x;y\right)=\left(5;-2\right)\)
\(a,\Leftrightarrow x\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\\ b,\Leftrightarrow3x\left(x-1\right)+\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(3x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\\ c,\Leftrightarrow\left(x+2\right)\left(2x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{2}\end{matrix}\right.\)
\(2+\left(x-1\right)^2=0\)
\(\left(x-1\right)^2=-2\left(loại\right)\)
P/s : làm từng phần một
( x - 1 ) ( x - 5 ) > 0
TH1: cả x - 1 và x - 5 lớn hơn 0
+) x - 1 > 0 => x > 1
+) x - 5 > 0 => x > 5
=> x > 5
TH2 : cả x - 1 và x - 5 đều bé hơn 0
+) x - 1 < 0 => x < 1
+) x - 5 < 0 => x < 5
=> x < 1
Vậy,..........
Bài 2:
a, |x-1| -x +1=0
|x-1| = 0-1+x
|x-1| = -1 + x
\(\orbr{\begin{cases}x-1=-1+x\\x-1=1-x\end{cases}}\)
\(\orbr{\begin{cases}x=-1+x+1\\x=1-x+1\end{cases}}\)
\(\orbr{\begin{cases}x=x\\x=2-x\end{cases}}\)
x = 2-x
2x = 2
x = 2:2
x=1
b, |2-x| -2 = x
|2-x| = x+2
\(\orbr{\begin{cases}2-x=x+2\\2-x=2-x\end{cases}}\)
2-x = x+2
x+x = 2-2
2x = 0
x = 0
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
\(\left(x-1\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow x-1=0\)(vì x2 + 1 > 0 )
\(\Leftrightarrow x=1\)
\(\left(x+1\right)^2\left(x-2\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
a) x. (x - 1) = 0
x = 0 hoặc x = 1
b) (x + 1)(x - 2) = 0
x = -1 hoặc x = 2
\(x^2+x-1=0\)
=>\(x^2+x+\dfrac{1}{4}-\dfrac{5}{4}=0\)
=>\(\left(x+\dfrac{1}{2}\right)^2=\dfrac{5}{4}\)
=>\(\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{\sqrt{5}}{2}\\x+\dfrac{1}{2}=-\dfrac{\sqrt{5}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{5}}{2}-\dfrac{1}{2}\\x=-\dfrac{\sqrt{5}}{2}-\dfrac{1}{2}\end{matrix}\right.\)