Cho góc xAy khác góc bẹt. Az la tia phân giác của xAy. Trên tia Ax lấy điểm B cố định, lấy điểm C la điểm chuyển động trên đoạn AB. Trên Ay lấy điểm D sao cho DA=BC. Chứng minh rằng đường trung trực của CD luôn đi qua 1 điểm cố định
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vẽ đường trung trực của AB cắt Az, Ax lần lượt tại M,H
Ta có \(\widehat{DAM}=\widehat{MAB}\)(Az là tia phân giác của góc xAy)
Mà \(\widehat{MBA}=\widehat{MAB}\)(do MH là trung trực của AB)
\(\Rightarrow\widehat{DAM}=\widehat{MBA}\)
Xét \(\Delta ADM\)và \(\Delta BCM\)có:
AD = BC (gt)
\(\widehat{DAM}=\widehat{CBM}\)(cmt)
AM = BM (do MH là trung trực của AB))
Do đó \(\Delta ADM=\Delta BCM\left(c-g-c\right)\)
\(\Rightarrow DM=CM\)(hai cạnh tương ứng)
Khi đó M thuộc đường trung trực của CD
Vậy đường trung trực của CD luôn đi qua một điểm cố định M khi C và D chuyển động (đpcm)
a: Xét ΔOAB và ΔOAC có
OA chung
\(\widehat{BAO}=\widehat{CAO}\)
OB=OC
Do đó: ΔOAB=ΔOAC
b: Xét ΔOBM và ΔOCN có
OB=OC
\(\widehat{OBM}=\widehat{OCN}\)
BM=CN
Do đó: ΔOBM=ΔOCN
*Tự vẽ hình
a) Xét tam giác ABI và ACI có :
AC=AB(GT)
\(\widehat{CAI}=\widehat{IAB}\left(GT\right)\)
AI-cạnh chung
-> Tam giác ABI=ACI ( c.g.c )
b) Do tam giác ABI=ACI (cmt)
-> \(\widehat{AIB}=\widehat{AIC}=90^o\)
-> AI vuông góc với BC
#Hoctot
Câu hỏi của Hihi - Toán lớp 7 - Học toán với OnlineMath