Bài 2 (1 điểm). Tìm $x$, biết
a) $(x+1)(x-3)-x^2+6x-9=0$.
b) $2(x+3)+4(2-2x)=2(x-2)$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\)\(x^3-x^2-x+1=0\)
\(\Leftrightarrow\)\(x^2\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)^2\left(x+1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}\left(x-1\right)^2=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}}\)
Vậy \(x=1\) hoặc \(x=-1\)
Chúc bạn học tốt ~
Bài 1 :
\(a)\)\(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+3\right)\left(x-3\right)=15\)
\(\Leftrightarrow\)\(x^3-1-x\left(x^2-3^2\right)=15\)
\(\Leftrightarrow\)\(x^3-1-x^3+9x=15\)
\(\Leftrightarrow\)\(9x=16\)
\(\Leftrightarrow\)\(x=\frac{16}{9}\)
Vậy \(x=\frac{16}{9}\)
Chúc bạn học tốt ~
\(A=x^2-2x+10\)
\(A=\left(x^2-2x+1\right)+9\)
\(A=\left(x-1\right)^2+9\)
Mà \(\left(x-1\right)^2\ge0\)
\(\Rightarrow A\ge9\)
Dấu "=" xảy ra khi :
\(x-1=0\Leftrightarrow x=1\)
Vậy Min A = 9 khi x = 1
\(B=x^2-5x-7\)
\(B=\left(x^2-5x+\frac{25}{4}\right)-\frac{53}{4}\)
\(B=\left(x-\frac{5}{2}\right)^2-\frac{53}{4}\)
Mà \(\left(x-\frac{5}{2}\right)^2\ge0\)
\(\Rightarrow B\ge-\frac{53}{4}\)
Dấu "=" xảy ra khi :
\(x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)
Vậy \(B_{Min}=-\frac{53}{4}\Leftrightarrow x=\frac{5}{2}\)
a) (x-2)^3-x(x+1)(x-1)+6x(x-3)=0
\(x^3-6x^2+12x-8-x\left(x^2-1\right)+6x\left(x-3\right)=0\)
\(x^3-6x^2+12x-8-x^3+x+6x^2-18x=0\)
\(-5x-8=0\)
\(x=-\frac{8}{5}\)
Mai mik làm mấy bài kia sau
e: Ta có: \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\Leftrightarrow x^3+8-x^3-2x=15\)
\(\Leftrightarrow2x=-7\)
hay \(x=-\dfrac{7}{2}\)
f: Ta có: \(x^3-6x^2+12x-19=0\)
\(\Leftrightarrow x^3-6x^2+12x-8-11=0\)
\(\Leftrightarrow\left(x-2\right)^3=11\)
hay \(x=\sqrt[3]{11}+2\)
bài 1:
a) (x+1)^2-(x-1)^2-3(x+1)(x-1)
=(x+1+x-1)(x+1-x+1)-3x^2-3
=2x^2-3x^2-3
=-x^2-3
Bài 8:
Ta có: \(A=-x^2+2x+4\)
\(=-\left(x^2-2x-4\right)\)
\(=-\left(x^2-2x+1-5\right)\)
\(=-\left(x-1\right)^2+5\le5\forall x\)
Dấu '=' xảy ra khi x=1
Câu 1 :
\(\left(x-2\right)^2=x^2-4x+4\)
Câu 2:
\(2x^2\left(4x-5x^3\right)+10x^5-5x^3\)
\(=8x^3-10x^5+10x^5-5x^3\)
\(=3x^3\)
\(\left(x-2\right)\left(x^2-2x+4\right)+\left(x-4\right)\left(x-2\right)\)
\(=x^3-4x^2+8x-8+x^2-6x+8\)
\(=x^3-3x^2+2x\)
Còn lại tự làm nha dài lắm
a/
\(\Leftrightarrow\left(x+1\right)\left(x-3\right)-\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1-x+3\right)=0\)
\(\Leftrightarrow4\left(x-3\right)=0\Leftrightarrow x=3\)
b/
\(\Leftrightarrow4x^2\left(x-1\right)-4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(4x^2-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)