Chứng tỏ rằng các sồ sau là số nguyên tố cùng nhau :
a) n+2 và n+3
b) n+1 và 3n+4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Gọi $d$ là ƯCLN $(n+2, n+3)$
$\Rightarrow n+2\vdots d, n+3\vdots d$
$\Rightarrow (n+3)-(n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$
Vậy $ƯCLN(n+2, n+3)=1$ hay $n+2, n+3$ nguyên tố cùng nhau.
b.
Gọi $d$ là ƯCLN $(2n+3, 3n+5)$
$\Rightarrow 2n+3\vdots d$ và $3b+5\vdots d$
$\Rightarrow 2(3n+5)-3(2n+3)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(2n+3,3n+5)=1$ nên 2 số này nguyên tố cùng nhau.
a) Gọi ƯCLN (n + 3; n + 2) = d.
Ta thấy (n + 3) chia hết cho d; (n+2) chia hết cho d=>[(n + 3)- (n + 2)] chia hết cho d =>l chia hết cho d
Nên d = 1. Do đó n + 3 và n + 2 là hai số nguyên tố cùng nhau.
b) Gọi ƯCLN (3n+4; 3n + 7) = đ.
Ta thấy (3n + 4) chia hết cho d;(3n+7) chia hết cho d =>[(3n+7) - (3n + 4)] chia hết cho d =>3 chia hết cho d nên
d = 1 hoặc d = 3.
Mà (3n + 4) không chia hết cho 3; (3n + 7) không chia hết cho 3 nên d = 1. Ta có điều phải chứng minh.
c) Gọi ƯCLN (2n + 3; 4n + 8) = d.
Ta thấy (2n + 3) chia hết cho d ; (4n + 8) chia hết cho d => [(4n + 8) - 2.(2n +3)] chia hết cho d => 2 chia hết cho d
nên d = 1 hoặc d = 2.
Mà (2n+3) không chia hết cho 2 nên d = 1. Ta có điều phải chứng minh.
a) Gọi d là ƯCLN (n;n+1) (\(d\inℕ^∗\))
\(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}\Rightarrow n+1-n⋮d\Rightarrow1⋮d}\)
Mà \(d\inℕ^∗\)=> d=1 => ƯCLN (n;n+1)=1
=> n; n+1 nguyên tố cùng nhau với \(n\inℕ\)(đpcm)
b) Gọi d là ƯCLN (n+1; 3n+4) \(\left(d\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\3n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(n+1\right)⋮d\\3n+4⋮d\end{cases}\Rightarrow}\hept{\begin{cases}3n+3⋮d\\3n+4⋮d\end{cases}}}\)
=> (3n+4)-(3n+3) chia hết cho d
=> 1 chia hết cho d. Mà d thuộc N*
=> d=1
=> ƯCLN (n+1; 3n+4)=1
=> n+1 và 3n+4 nguyên tố cùng nhau với \(n\inℕ\)
c) Gọi d là ƯCLN (2n+1;3n+2) \(\left(d\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}}\)
=> (6n+4)-(6n+3) chia hết cho d
=> 1 chia hết cho d. Mà d thuộc N*
=> d=1 => ƯCLN (2n+1; 3n+2)=1
=> 2n+1; 3n+2 nguyên tố cùng nhau với n\(\in\)N
a: Gọi d=ƯCLN(2n+2;2n+3)
=>2n+3-2n-2 chia hết cho d
=>1 chia hết cho d
=>d=1
=>2n+2 và 2n+3 là hai số nguyên tố cùng nhau
b: Gọi d=ƯCLN(2n+1;n+1)
=>2n+1 chia hết cho d và n+1 chia hết cho d
=>2n+2 chia hết cho d và 2n+1 chia hết cho d
=>2n+2-2n-1 chia hết cho d
=>1 chia hết cho d
=>d=1
=>ĐPCM
a: Gọi d là ước chung lớn nhất của 3n+4 và n+1
=>\(\left\{{}\begin{matrix}3n+4⋮d\\n+1⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3n+4⋮d\\3n+3⋮d\end{matrix}\right.\)
=>\(3n+4-3n-3⋮d\)
=>\(1⋮d\)
=>d=1
=>n+1 và 3n+4 là hai số nguyên tố cùng nhau
b: Gọi d là ước chung lớn nhất của 7n+10 và 5n+7
=>\(\left\{{}\begin{matrix}7n+10⋮d\\5n+7⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}35n+50⋮d\\35n+49⋮d\end{matrix}\right.\)
=>\(35n+50-35n-49⋮d\)
=>\(1⋮d\)
=>d=1
=>7n+10 và 5n+7 là hai số nguyên tố cùng nhau
c: Gọi d là ước chung lớn nhất của 14n+3 và 21n+4
=>\(\left\{{}\begin{matrix}14n+3⋮d\\21n+4⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}42n+9⋮d\\42n+8⋮d\end{matrix}\right.\)
=>\(42n+9-42n-8⋮d\)
=>\(1⋮d\)
=>d=1
=>14n+3 và 21n+4 là hai số nguyên tố cùng nhau
Làm mẫu 2 phần nhé, 2 phần còn lại tương tự, ez lắm!
1) G/s \(\left(n+1;n+2\right)=d\)
\(\Rightarrow\hept{\begin{cases}\left(n+1\right)⋮d\\\left(n+2\right)⋮d\end{cases}}\Rightarrow\left(n+2\right)-\left(n+1\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
=> n+1 và n+2 NTCN
3) G/s: \(\left(2n+1;n+1\right)=d\Rightarrow\hept{\begin{cases}\left(2n+1\right)⋮d\\\left(n+1\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(2n+1\right)⋮d\\2\left(n+1\right)⋮d\end{cases}}\)
\(\Rightarrow2\left(n+1\right)-\left(2n+1\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
=> đpcm
b) gọi d = ƯCLN(2n + 3; 3n + 5)
--> 3(2n + 3) và 2(3n + 5) chia hết cho d
--> (6n + 10) - (6n + 9) chia hết cho d
--> 1 chia hết cho d
--> d = 1
--> 2n + 3 và 3n + 5 nguyên tố cùng nhau
a: Vì n+2 và n+3 là hai số tự nhiên liên tiếp
nên n+2 và n+3 là hai số nguyên tố cùng nhau
a, Gọi d = ƯCLN(n+2;n+3)
\(\Leftrightarrow\hept{\begin{cases}n+2⋮d\\n+3⋮d\end{cases}}\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d=1\)
\(\LeftrightarrowƯCLN\left(n+2;n+3\right)=1\rightarrowđpcm\)
b, Gọi d = ƯCLN(n+1; 3n+4)
\(\Leftrightarrow\hept{\begin{cases}n+1⋮d\\3n+4⋮d\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3n+3⋮d\\3n+4⋮d\end{cases}}\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d=1\)
\(\LeftrightarrowƯCLN\left(n+1;3n+4\right)=1\rightarrowđpcm\)
a)
Đặt UCLN ( n+2,n+3 ) = d
=> n+2 : d, n+3 : d
=> n+3 - n+2 : d
hay 1 : d
=> d thuộc Ư(1)=1
=> UCLN ( n+2,n+3 ) = 1
=> n+2 và n+3 là hai số nguyên tố cùng nhau.
b)
Đặt UCLN ( n+1,3n+4 ) = d
=> n+1 : d và 3n+4 : d
=> 3.(n+1) : d hay 3n + 3 : d và 3n+4 : d.
=> 3n+4 - 3n+3 : d hay 1 : d
=> d thuộc Ư(1) = 1
=> UCLN ( n+1,3n+4 ) = 1
=> n+1 và 3n+4 là hai số nguyên tố cùng nhau.