K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2018

xin bài này , 10 phút sau làm

6 tháng 7 2018

\(A=\left(x^2-6xy+9y^2\right)+4\left(x-3y\right)+4+\left(x^2-10x+25\right)+1975\)

\(A=\left(x-3y\right)^2+4\left(x-3y\right)+4+\left(x-5\right)^2+1975\)

\(A=\left(x-3y+2\right)^2+\left(x-5\right)^2+1975\ge1975\)

GTNN LÀ 1975 tại x=5    và y=7/3

26 tháng 8 2016

A=2x^2+9y^2-6xy-6x-12y+2024 
A = (x^2 -6xy +9y^2) + 4(x -3y) + x^2 - 10x + 2024
A = (x -3y)^2 +4(x -3y) + 4 + x^2 -10x +25 + 1995
A = (x -3y +2)^2 + (x -5)^2 + 1995 \geq 1995
Min A = 1995 
 x - 5 = 0 => x = 5
Và x - 3y + 2 = 0 hay 5 -3y +2 = 0 => -3y = -7 => y = 7/3 


\(K\)\(nha!~!\)

17 tháng 7 2015

GTNN đạt tại \(x=5;\text{ }y=\frac{7}{3}\).

Theo đó mà phân tích A thành tổng các bình phương sao cho dấu bằng xảy ra tai x = 5; y = 7/3.

5 tháng 12 2016

 ggia thich ro ra ban

1 tháng 10 2017

Min A= 1996 tại x =2 y =0.

16 tháng 1 2017

\(A=2x^2+9y^2-6xy-6x-12y+2036\)

   \(=x^2-10x+25+x^2-6xy+9y^2+4x-12y+4+2007\)

   \(=\left(x-5\right)^2+\left(x-3y\right)^2+4\left(x-3y\right)+4+2007\)

   \(=\left(x-5\right)^2+\left(x-3y+2\right)^2+2007\)

 \(\Rightarrow A\ge2007\)

Dấu "=" xảy ra khi \(x=5,y=\frac{7}{3}\)

5 tháng 5 2016

Bài này đến lớp 8 còn làm đc (bọn chuyên). 

Không khó đau, mình hd nhé:

Bạn thấy có 2x^2 và 9y^2 không

2x^2 không là bình phương của gì cả và không ghép được với các số sau nên tách ra.

Giải như bình thường.

\(x^2+x^2+\left(3y\right)^2-6xy-6x-12y+2010\)

\(\left(x-3y\right)^2-4x-12y+x^2-2x+2010\)

\(\left(x-3y\right)^2-4\left(x-3y\right)+4+x^2-2x+1+2005\)

\(\left(x-3y+2\right)^2+\left(x-1\right)^2+2005\ge2005\)

5 tháng 5 2016

A=(x-3y+2)^2+(x-5)^2+....

xong r đó

29 tháng 10 2018

Ta có :

\(P=2x^2+9y^2-6xy-6x-12y+2018\)

\(P=\left(x^2+9y^2+4-6xy-12y+4x\right)+x^2-10x+25+1989\)

\(P=\left(x-3y+2\right)^2+\left(x-5\right)^2+1989\ge1989\)

\(\Rightarrow MinP=1989\Leftrightarrow\hept{\begin{cases}x=5\\y=\frac{7}{3}\end{cases}}\)

22 tháng 8 2017

A = 2x2 + 9y2 - 6xy - 6x - 12y + 2004

= (x2-6xy+9y2) + 4(x-3y) + 4 + (x2-10x+25) + 1975

= (x-3y)2 + 4(x-3y) + 4 + (x-5)2 + 1975

= (x-3y+2)2 + (x-5)2 + 1975 \(\ge\) 1975

Vậy MinA = 1975

Dấu "=" xảy ra khi x = 5; y = \(\dfrac{7}{3}\)

22 tháng 8 2017

Sao lai y = 7/3