Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GTNN đạt tại \(x=5;\text{ }y=\frac{7}{3}\).
Theo đó mà phân tích A thành tổng các bình phương sao cho dấu bằng xảy ra tai x = 5; y = 7/3.
\(A=\left(x^2-6xy+9y^2\right)+4\left(x-3y\right)+4+\left(x^2-10x+25\right)+1975\)
\(A=\left(x-3y\right)^2+4\left(x-3y\right)+4+\left(x-5\right)^2+1975\)
\(A=\left(x-3y+2\right)^2+\left(x-5\right)^2+1975\ge1975\)
GTNN LÀ 1975 tại x=5 và y=7/3
Ta có :
\(P=2x^2+9y^2-6xy-6x-12y+2018\)
\(P=\left(x^2+9y^2+4-6xy-12y+4x\right)+x^2-10x+25+1989\)
\(P=\left(x-3y+2\right)^2+\left(x-5\right)^2+1989\ge1989\)
\(\Rightarrow MinP=1989\Leftrightarrow\hept{\begin{cases}x=5\\y=\frac{7}{3}\end{cases}}\)
A = 2x2 + 9y2 - 6xy - 6x - 12y + 2004
= (x2-6xy+9y2) + 4(x-3y) + 4 + (x2-10x+25) + 1975
= (x-3y)2 + 4(x-3y) + 4 + (x-5)2 + 1975
= (x-3y+2)2 + (x-5)2 + 1975 \(\ge\) 1975
Vậy MinA = 1975
Dấu "=" xảy ra khi x = 5; y = \(\dfrac{7}{3}\)
\(2x^2+9y^2-6xy-6x-12y+2004\)
\(=x^2-10x+25+x^2+9y^2+4-6xy+4x-12y+1975\)
\(=\left(x-5\right)^2+\left(x-3y+2\right)^2+1975\ge1975\)
Dấu \(=\)khi \(\hept{\begin{cases}x-5=0\\x-3y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=\frac{7}{3}\end{cases}}\).