K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2017

Câu hỏi của Nhóc vậy - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

30 tháng 12 2017

em cảm ơn

29 tháng 12 2017

Câu hỏi của Nhóc vậy - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

27 tháng 12 2015

AH = BC => tam giác MBC =MHA ( tự cm)

=> BMH vuông cân tại M => NBA = BAN = 45

=>...

AH
Akai Haruma
Giáo viên
10 tháng 2

Lời giải:
a. Ta có:

$\widehat{BNC}=\widehat{BMC}=90^0$ (góc nt chắn nửa đường tròn - cung BC)

$\Rightarrow BN\perp AC, CM\perp AB$

Tam giác $ABC$ có 2 đường cao $BN, CM$ cắt nhau tại $H$ nên $H$ là trực tâm của tam giác $ABC$.

b. Gọi $D$ là giao của $AH$ và $BC$. Do $H$ là trực tâm tam giác $ABC$ nên $AH\perp BC$ tại $D$.

Tam giác $BMC$ vuông tại $M$

$\Rightarrow$ trung tuyến $MO= \frac{BC}{2}=BO$ (đường trung tuyến ứng với cạnh huyền bằng 1/2 cạnh huyền)

$\Rightarrow BOM$ là tam giác cân tại $O$

$\Rightarrow \widehat{OMB}=\widehat{OBM}=90^0-\widehat{BCM}$

$=90^0-\widehat{DCH}=\widehat{MHA}=\widehat{MHE}(1)$

$CM\perp AB$ nên $AMH$ là tam giác vuông tại $M$

$\Rightarrow ME=\frac{AH}{2}=EH$ (đường trung tuyến ứng với cạnh huyền bằng 1/2 cạnh huyền)

$\Rightarrow MEH$ cân tại $E$

$\Rightarrow \widehat{MHE}=\widehat{EMH}(2)$

Từ $(1); (2)\Rightarrow \widehat{OMB}=\widehat{EMH}$

$\Rightarrow \widehat{OMB}+\widehat{OMC}=\widehat{EMH}+\widehat{OMC}$

$\Rightarrow \widehat{BMC}=\widehat{EMO}$

$\Rightarrow \widehat{EMO}=90^0$

$\Rightarrow EM\perp MO$ nên $EM$ là tiếp tuyến $(O)$
c.

Ta có:

$EM=\frac{AH}{2}=EN$

$OM=ON$

$\Rightarrow EO$ là trung trực của $MN$

Gọi $T$ là giao điểm $EO, MN$ thì $EO\perp MN$ tại $T$ và $T$ là trung điểm $MN$.

Xét tam giác $EMO$ vuông tại $M$ có $MT\perp EO$ thì:

$ME.MO = MT.EO = \frac{MN}{2}.EO$

$\Rightarrow 2ME.MO = MN.EO$

 

 

AH
Akai Haruma
Giáo viên
10 tháng 2

Hình vẽ:

16 tháng 12 2023

a: Xét (O) có

ΔBMC nội tiếp

BC là đường kính

Do đó: ΔBMC vuông tại M

=>CM\(\perp\)MB tại M

=>CM\(\perp\)AB tại M

Xét (O) có

ΔBNC nội tiếp

BC là đường kính

Do đó ΔBNC vuông tại N

=>BN\(\perp\)NC tại N

=>BN\(\perp\)AC tại N

Xét ΔABC có
BN,CM là các đường cao

BN cắt CM tại H

Do đó: H là trực tâm của ΔABC

b: Gọi K là giao điểm của AH và BC

Xét ΔABC có

H là trực tâm của ΔABC

K là giao điểm của AH và BC

Do đó: AH\(\perp\)BC tại K

Ta có: ΔAMH vuông tại M

mà ME là đường trung tuyến

nên EM=EH

=>ΔEMH cân tại E

=>\(\widehat{EMH}=\widehat{EHM}\)

mà \(\widehat{EHM}=\widehat{KHC}\)(hai góc đối đỉnh)

và \(\widehat{KHC}=\widehat{ABC}\left(=90^0-\widehat{MCB}\right)\)

nên \(\widehat{EMH}=\widehat{ABC}\)

Ta có: OM=OC

=>ΔOMC cân tại O

=>\(\widehat{OMC}=\widehat{OCM}\)

Ta có: \(\widehat{EMO}=\widehat{EMH}+\widehat{OMC}\)

\(=\widehat{ABC}+\widehat{OCM}\)

\(=90^0\)

=>ME là tiếp tuyến của (O)

c: Gọi I là giao điểm của EO và MN

Ta có: ΔHAN vuông tại N

mà NE là đường trung tuyến

nên NE=AE=ME

Ta có: NE=ME

=>E nằm trên trung trực của NM(1)

Ta có: OM=ON

=>O nằm trên đường trung trực của MN(2)

Từ (1) và (2) suy ra OE là đường trung trực của MN

=>OE\(\perp\)MN tại trung điểm I của MN

Xét ΔMEO vuông tại M có MI là đường cao

nên \(MI\cdot EO=ME\cdot MO\)

=>\(2\cdot MI\cdot EO=2\cdot ME\cdot MO\)

=>\(MN\cdot OE=2\cdot ME\cdot MO\)

a: Xét (O) có

ΔBMC nội tiếp đường tròn

BC là đường kính

Do đó: ΔBMC vuông tại M

Xét (O) có 

ΔBNC nội tiếp đường tròn

BC là đường kính

Do đó: ΔBNC vuông tại N

Xét ΔBAC có

BN là đường cao ứng với cạnh huyền AC

CM là đường cao ứng với cạnh huyền AB

BN cắt CM tại H

Do đó: AH⊥BC

29 tháng 10 2021

a: Xét (O) có

ΔBNC nội tiếp đường tròn

BC là đường kính

Do đó: ΔBNC vuông tại N

Xét (O) có 

ΔBMC nội tiếp đường tròn

BC là đường kính

Do đó: ΔBMC vuông tại M

Xét ΔABC có

BN là đường cao

CM là đường cao

BN cắt CM tại H

Do đó: AH\(\perp\)BC

24 tháng 1 2023

ít tra mạng xong tham khảo đi ạ

nếu bạn làm được thì bạn hãy làm đi , tra mạng , và tham khảo ít thôi nhé