Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a)
Diện tích phần tăng thêm là :
(4x10):2=20(m)
Đáp số : 20 m
Ở dưới mình gửi hình nhưng không được, mình trình bày. Hình khó nhìn 1 chút
Gọi M,N là giao của 2 đường tròn \(\left(O_1\right),\left(O_2\right)\)có đường kình làn lượt là AB,CD
Tam giác FAD đồng dạng với tam giác FCB (gg)
\(\Rightarrow\frac{FA}{FC}=\frac{FD}{FB}\Rightarrow FA.FB=FC\cdot FD\)
FN cắt đường tròn \(\left(O_1\right);\left(O_2\right)\)lần lượt tại \(M_1;M_2\left(M_1;M_2\ne N\right)\)
Cm tương tự có:
\(\hept{\begin{cases}FA\cdot FB=FM_1\cdot FN\\FC\cdot FB=FM_2\cdot FN\end{cases}}\)
Do \(FM_1=FM_2\)nên \(M_1=M_2\)
Vậy M1;M2 trùng nhau => F,M,N thẳng hàng (1)
Tam giác KC'B đồng dạng với tam giác KMB'
\(\Rightarrow\frac{KC'}{KB'}=\frac{KB}{KC}\Rightarrow KC'\cdot KC=KB'\cdot KB\)
Tam giác KBN1 đồng dạng với tam giác KMB'
\(\Rightarrow\frac{KB}{KM}=\frac{KN_1}{KB'}\Rightarrow KN_1\cdot KM=KB\cdot KB'\)
Tương tự \(KN_2\cdot KM=KB\cdot KB'\)
Ta có KN1=KN2 => N1 và N2 trùng nhau
Vậy N; N1;N2 trùng nhau => K thuộc MN
Do vậy: H;K;M;N thẳng hàng (2)
Từ (1)(2) => K;F;M;N thẳng hàng
Vậy F;H;K thẳng hàng
Xét ΔAHB vuông tại H có HE là đường cao
nên AE*AB=AH^2
Xét ΔAHC vuông tại H có HD là đường cao
nên AD*AC=AH^2
=>AE*AB=AD*AC
=>AE/AC=AD/AB
mà góc DAE chung
nên ΔAED đồng dạng với ΔACB
a: Xét ΔOBA và ΔOCA có
OB=OC
AB=AC
OA chung
Do đó: ΔOBA=ΔOCA
=>\(\widehat{OBA}=\widehat{OCA}\)
mà \(\widehat{OBA}=90^0\)
nên \(\widehat{OCA}=90^0\)
=>AC là tiếp tuyến của (O)
b: Xét (O) có
KD,KE là các tiếp tuyến
Do đó: KD=KE
=>K nằm trên đường trung trực của DE(1)
ta có: OD=OE
=>O nằm trên đường trung trực của DE(2)
Từ (1) và (2) suy ra OK là đường trung trực của DE
=>OK\(\perp\)DE tại I
Xét ΔODK vuông tại D có DI là đường cao
nên \(OI\cdot OK=OD^2=R^2\left(3\right)\)
Ta có: AB=AC
=>A nằm trên đường trung trực của BC(4)
ta có: OB=OC
=>O nằm trên đường trung trực của BC(5)
Từ (4) và (5) suy ra AO là đường trung trực của BC
=>AO\(\perp\)BC tại H
Xét ΔOBA vuông tại B có BH là đường cao
nên \(OH\cdot OA=OB^2=R^2\left(6\right)\)
Từ (3) và (6) suy ra \(OH\cdot OA=OI\cdot OK\)
a) Xét tứ giác ABOC có
ˆOBA+ˆOCA=1800(900+900=1800)���^+���^=1800(900+900=1800)
Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Xét (O) có
AB là tiếp tuyến có B là tiếp điểm(gt)
AC là tiếp tuyến có C là tiếp điểm(gt)
Do đó: AB=AC(Tính chất hai tiếp tuyến cắt nhau)
Ta có: OB=OC(=R)
nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: AB=AC(cmt)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
hay OA⊥⊥BC
Xét ΔOBC có OB=OC(=R)
nên ΔOBC cân tại O(Định nghĩa tam giác cân)
mà OH là đường cao ứng với cạnh BC
nên H là trung điểm của BC(Đpcm)
Câu hỏi của Nhóc vậy - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo tại đây nhé.