Cho \(\frac{a}{b}=\frac{c}{d}\) chứng minh
\(\frac{4a-3b}{a}=\frac{4c-3d}{c}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt : \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
Khi đó : \(\frac{bk+dk}{bk}=\frac{b+d}{b}\)
\(\Rightarrow\frac{k\left(b+d\right)}{bk}=\frac{b+d}{b}\)
\(\Rightarrow\frac{b+d}{b}=\frac{b+d}{b}\left(đpcm\right)\)
Khi đó : \(\frac{4bk+3b}{4dk+3d}=\frac{4bk-3b}{4dk-3d}\)
\(\Rightarrow\frac{b\left(4k+3\right)}{d\left(4k+3\right)}=\frac{b\left(4k-3\right)}{d\left(4k-3\right)}\)
\(\Rightarrow\frac{b}{d}=\frac{b}{d}\left(đpcm\right)\)
a) \(\frac{a}{b}\)=\(\frac{c}{d}\), áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{a}{b}\)=\(\frac{c}{d}\)=\(\frac{a+c}{b+d}\)
\(\frac{a+c}{b+d}\)=\(\frac{a}{b}\)
\(\Rightarrow\)\(\frac{a+c}{a}\)=\(\frac{b+d}{d}\)
b) \(\frac{a}{b}\)=\(\frac{c}{d}\)\(\Rightarrow\)\(\frac{a}{c}\)=\(\frac{b}{d}\)\(\Rightarrow\)\(\frac{4a}{4c}\)=\(\frac{3b}{3d}\)(1)
Từ (1), áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{4a}{4c}\)=\(\frac{3b}{3d}\)=\(\frac{4a+3b}{4c+3d}\)=\(\frac{4a-3b}{4c-3d}\)
a, Ta có: \(\frac{a}{b}=\frac{c}{d}\)\(\Leftrightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)(1)
\(\Leftrightarrow\frac{a^2}{b^2}=\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{c}{d}=\frac{ac}{bd}\)(2)
Từ (1) và (2) => \(\frac{a^2+c^2}{b^2+d^2}=\frac{ac}{bd}\)
b, Ta có: \(\frac{a}{b}=\frac{c}{d}\)\(\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)\(\Leftrightarrow\frac{4a}{4c}=\frac{3b}{3d}=\frac{4a+3b}{4c+3d}=\frac{4a-3b}{4c-3d}\)
\(\Leftrightarrow\frac{4a+3b}{4c+3d}=\frac{4a-3b}{4c-3d}\)
\(\Leftrightarrow\left(4a+3b\right)\left(4c-3d\right)=\left(4a-3b\right)\left(4c+3d\right)\)
Ta có: \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\Leftrightarrow\frac{4a}{4c}=\frac{3b}{3d}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{4a}{4c}=\frac{3b}{3d}=\frac{4a-3b}{4c-3d}=\frac{4a+3b}{4c+3d}\)
Vậy \(\frac{4a-3b}{4c-3d}=\frac{4a+3b}{4c+3d}\left(ĐPCM\right)\)
Tạm thời giải phần a đã nhé -_-
a, Từ a/b = c/d => a/c=b/d
Đặt a/c=b/d=k thì a=ck, b=dk
Xét : 4a-3b/4a+3b=4ck-3dk/4ck+3dk=k.(4c-3d)/k.(4c+3d)=4c-3d/4c+3d
=> 4a-3b/4a+3b=4c-3d/4c+3d => 4a-3b/4c-3d=4a+3b/4c+3d
Nhìn trên máy khó lắm viết lại theo lời giải ra nháp trc' cho dễ nhìn nhé @@
\(a,\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{4a}{4c}=\frac{3b}{3d}=\frac{4a-3b}{4c-3d}\)\(\left(1\right)\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{4a}{4c}=\frac{3b}{3d}=\frac{4a+3b}{4a+3d}\)\(\left(2\right)\)
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{4a-3b}{4c-3d}=\frac{4a+3b}{4c+3d}\left(đpcm\right)\)
\(b\)Đặt \(\frac{a}{c}=\frac{b}{d}=k\)\(\Rightarrow a=ck;b=dk\)
\(\Rightarrow\frac{a^2-b^2}{c^2-d^2}=\frac{\left(ck\right)^2-\left(dk\right)^2}{c^2-d^2}=\frac{c^2k^2-d^2k^2}{c^2-d^2}=\frac{k^2\left(c^2-d^2\right)}{c^2-d^2}=k^2\)\(\left(3\right)\)
Mà \(\frac{ab}{cd}=\frac{ck.dk}{cd}=k^2\)\(\left(4\right)\)
Từ ( 3 ) và ( 4 ) \(\Rightarrow\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\Rightarrow\frac{a^2-b^2}{ab}=\frac{c^2-d^2}{cd}\left(đpcm\right)\)
\(c,\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\left(5\right)\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{5b}{5d}=\frac{2a+5b}{2c+5d}\left(6\right)\)
TỪ ( 5 ) và ( 6 ) \(\Rightarrow\frac{a-b}{c-d}=\frac{2a+5b}{2c+5d}\left(đpcm\right)\)
Từ a/b = c/d => a/c = b/d => 2a/2c = 3b/ 3d = 2a + 3b / 2c + 3d (1)
Cx từ a/b =c/d => a/c = c/d => 4a/4c = 5b/5d = 4a - 5b / 4c-5d (2)
Mà 2a/ 2c = 4a/ 4c (3)
Từ (1) (2) (3) => đpcm
mk chỉ nghĩ như thế thôi chứ ko bt đúng hay sai nha
b, đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
ta có :
\(\frac{5a+3b}{5a-3b}=\frac{5bk+3b}{5bk-3b}=\frac{b\left(5k+3\right)}{b\left(5k-3\right)}=\frac{5k+3}{5k-3}\)
\(\frac{5c+3d}{5c-3d}=\frac{5dk+3b}{5dk-3b}=\frac{d\left(5k+3b\right)}{d\left(5k-3b\right)}=\frac{5k+3b}{5k-3b}\)
\(\Rightarrow\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3b}\)
xin lỗi nha viết gấp quá quên cả kết luận :))
5m dây đồng nặng 43g. hỏi 10km dây đồng như thế nặng bao nhiêu kg ?
giải giúp với
Đặt \(\frac{a}{b}=\frac{c}{d}=k\) ( \(k\ne0\))
\(\Rightarrow a=b.k\); \(c=d.k\)
Ta có: \(\frac{4a-3b}{a}=\frac{4.bk-3b}{bk}=\frac{b.\left(4k-3\right)}{bk}=\frac{4k-3}{k}\)(1)
mà \(\frac{4c-3d}{c}=\frac{4.dk-3d}{dk}=\frac{d.\left(4k-3\right)}{dk}=\frac{4k-3}{k}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{4a-3b}{a}=\frac{4c-3d}{c}\)( đpcm )