K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2019

a, Ta có: \(\frac{a}{b}=\frac{c}{d}\)\(\Leftrightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)(1)

\(\Leftrightarrow\frac{a^2}{b^2}=\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{c}{d}=\frac{ac}{bd}\)(2)

Từ (1) và (2) => \(\frac{a^2+c^2}{b^2+d^2}=\frac{ac}{bd}\)

b, Ta có: \(\frac{a}{b}=\frac{c}{d}\)\(\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)\(\Leftrightarrow\frac{4a}{4c}=\frac{3b}{3d}=\frac{4a+3b}{4c+3d}=\frac{4a-3b}{4c-3d}\)

\(\Leftrightarrow\frac{4a+3b}{4c+3d}=\frac{4a-3b}{4c-3d}\)

\(\Leftrightarrow\left(4a+3b\right)\left(4c-3d\right)=\left(4a-3b\right)\left(4c+3d\right)\)

15 tháng 10 2018

Đặt : \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

Khi đó : \(\frac{bk+dk}{bk}=\frac{b+d}{b}\)

\(\Rightarrow\frac{k\left(b+d\right)}{bk}=\frac{b+d}{b}\)

\(\Rightarrow\frac{b+d}{b}=\frac{b+d}{b}\left(đpcm\right)\)

Khi đó : \(\frac{4bk+3b}{4dk+3d}=\frac{4bk-3b}{4dk-3d}\)

\(\Rightarrow\frac{b\left(4k+3\right)}{d\left(4k+3\right)}=\frac{b\left(4k-3\right)}{d\left(4k-3\right)}\)

\(\Rightarrow\frac{b}{d}=\frac{b}{d}\left(đpcm\right)\)

15 tháng 10 2018

a) \(\frac{a}{b}\)=\(\frac{c}{d}\), áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{a}{b}\)=\(\frac{c}{d}\)=\(\frac{a+c}{b+d}\)

\(\frac{a+c}{b+d}\)=\(\frac{a}{b}\)

\(\Rightarrow\)\(\frac{a+c}{a}\)=\(\frac{b+d}{d}\)

b) \(\frac{a}{b}\)=\(\frac{c}{d}\)\(\Rightarrow\)\(\frac{a}{c}\)=\(\frac{b}{d}\)\(\Rightarrow\)\(\frac{4a}{4c}\)=\(\frac{3b}{3d}\)(1)

Từ (1), áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{4a}{4c}\)=\(\frac{3b}{3d}\)=\(\frac{4a+3b}{4c+3d}\)=\(\frac{4a-3b}{4c-3d}\)

6 tháng 7 2019

nhân chéo r rút gọn

6 tháng 7 2019

Ta có: \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\Leftrightarrow\frac{4a}{4c}=\frac{3b}{3d}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{4a}{4c}=\frac{3b}{3d}=\frac{4a-3b}{4c-3d}=\frac{4a+3b}{4c+3d}\)

Vậy \(\frac{4a-3b}{4c-3d}=\frac{4a+3b}{4c+3d}\left(ĐPCM\right)\)

6 tháng 7 2019

Tạm thời giải phần a đã nhé -_-

a, Từ a/b = c/d => a/c=b/d

Đặt a/c=b/d=k thì a=ck, b=dk

Xét : 4a-3b/4a+3b=4ck-3dk/4ck+3dk=k.(4c-3d)/k.(4c+3d)=4c-3d/4c+3d

=> 4a-3b/4a+3b=4c-3d/4c+3d => 4a-3b/4c-3d=4a+3b/4c+3d

Nhìn trên máy khó lắm viết lại theo lời giải ra nháp trc' cho dễ nhìn nhé @@

6 tháng 7 2019

\(a,\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{4a}{4c}=\frac{3b}{3d}=\frac{4a-3b}{4c-3d}\)\(\left(1\right)\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{4a}{4c}=\frac{3b}{3d}=\frac{4a+3b}{4a+3d}\)\(\left(2\right)\)

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{4a-3b}{4c-3d}=\frac{4a+3b}{4c+3d}\left(đpcm\right)\)

\(b\)Đặt \(\frac{a}{c}=\frac{b}{d}=k\)\(\Rightarrow a=ck;b=dk\)

\(\Rightarrow\frac{a^2-b^2}{c^2-d^2}=\frac{\left(ck\right)^2-\left(dk\right)^2}{c^2-d^2}=\frac{c^2k^2-d^2k^2}{c^2-d^2}=\frac{k^2\left(c^2-d^2\right)}{c^2-d^2}=k^2\)\(\left(3\right)\)

Mà \(\frac{ab}{cd}=\frac{ck.dk}{cd}=k^2\)\(\left(4\right)\)

Từ ( 3 ) và ( 4 ) \(\Rightarrow\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\Rightarrow\frac{a^2-b^2}{ab}=\frac{c^2-d^2}{cd}\left(đpcm\right)\)

\(c,\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\left(5\right)\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{5b}{5d}=\frac{2a+5b}{2c+5d}\left(6\right)\)

TỪ ( 5 ) và ( 6 ) \(\Rightarrow\frac{a-b}{c-d}=\frac{2a+5b}{2c+5d}\left(đpcm\right)\)

26 tháng 11 2017

5m dây đồng nặng 43g. hỏi 10km dây đồng như thế nặng bao nhiêu kg ?

giải giúp với

13 tháng 10 2020

Đặt \(\frac{a}{b}=\frac{c}{d}=k\) ( \(k\ne0\))

\(\Rightarrow a=b.k\)\(c=d.k\)

Ta có: \(\frac{4a-3b}{a}=\frac{4.bk-3b}{bk}=\frac{b.\left(4k-3\right)}{bk}=\frac{4k-3}{k}\)(1)

mà \(\frac{4c-3d}{c}=\frac{4.dk-3d}{dk}=\frac{d.\left(4k-3\right)}{dk}=\frac{4k-3}{k}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{4a-3b}{a}=\frac{4c-3d}{c}\)( đpcm )

23 tháng 10 2015

a)

áp dụng tính chất dãy tỉ số = nhau ta có :

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=>\frac{a}{b}=\frac{a+c}{b+d}=>\frac{a}{a+c}=\frac{b}{b+d}\left(đpcm\right)\)

b) 

đặt a/b=c/d=k

=>a=b.k

c=d.k

vế trái:\(\frac{4.a-3.b}{4.c-3.d}=\frac{4.b.k-3.b}{4.d.k-3.d}=\frac{b.\left(4.k-3\right)}{d.\left(4.k-3\right)}=\frac{b}{d}\)

vế phải :\(\frac{4a+3b}{4c+3d}=\frac{4.b.k+3.b}{4.d.k+3.d}=\frac{b\left(4.k+3\right)}{d\left(4.k+3\right)}=\frac{b}{d}\)

vậy ....

11 tháng 11 2023

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>\(a=bk;c=dk\)

1: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2\cdot bk+3\cdot dk}{2b+3d}=\dfrac{k\left(2b+3d\right)}{2b+3d}=k\)

\(\dfrac{2a-3c}{2b-3d}=\dfrac{2bk-3dk}{2b-3d}=\dfrac{k\left(2b-3d\right)}{2b-3d}=k\)

Do đó: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)

2: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4\cdot bk-3b}{4\cdot dk-3d}=\dfrac{b\left(4k-3\right)}{d\left(4k-3\right)}=\dfrac{b}{d}\)

\(\dfrac{4a+3b}{4c+3d}=\dfrac{4bk+3b}{4dk+3d}=\dfrac{b\left(4k+3\right)}{d\left(4k+3\right)}=\dfrac{b}{d}\)

Do đó: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)

3: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3bk+5b}{3bk-5b}=\dfrac{b\left(3k+5\right)}{b\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)

\(\dfrac{3c+5d}{3c-5d}=\dfrac{3dk+5d}{3dk-5d}=\dfrac{d\left(3k+5\right)}{d\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)

Do đó: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)

4: \(\dfrac{3a-7b}{b}=\dfrac{3bk-7b}{b}=\dfrac{b\left(3k-7\right)}{b}=3k-7\)

\(\dfrac{3c-7d}{d}=\dfrac{3dk-7d}{d}=\dfrac{d\left(3k-7\right)}{d}=3k-7\)

Do đó: \(\dfrac{3a-7b}{b}=\dfrac{3c-7d}{d}\)