625^5 và 125^7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6255 và 1257
a, 6255 = (54)5 = 520
1257 = (53)7 = 521
Vì 520 < 521 nên 6255 < 1257
b, 32n = (32)n = 9n
23n = (23)n = 8n
9n > 8n ( nếu n > 0)
9n = 8n (nếu n = 0)
Vậy nếu n = 0 thì 23n = 32n
nếu n > 0 thì 32n > 23n
ta có:
12579=(53)79
62560=(54)60
=>53<54 =>(53)79<(54)60
=>12579<62560
lâu rồi ko lm ko bt đúng ko
a) Ta có 2711 = (33)11 = 333
818 = (34)8 = 332
Vì 32 < 33
=> 332 < 333
=> 818 < 2711
b) Ta có 6255 = (54)5 = 520
1257 = (53)7 = 521
Vì 20 < 21
<=> 520 < 521
=> 6255 < 1257
c) Ta có 536 = (53)12 = 12512
1124 = (112)12 = 12112
Vì 125 > 121
<=> 12512 > 12112
<=> 536 > 1124
a. 2711 và 818
Ta có :
818 = ( 27 ) 3 . 8 = 2724
Ta có : 2711 < 2724
=> 2711 < 818
Vậy 2711 < 818
b. 6255 và 1257
Ta có :
6255 = ( 125 )5 . 7 = 12535
Ta có : 12535 > 1257
=> 6255 > 1257
Vậy 6255 > 1257
c. 536 và 1124
Ta có :
536 = 53 . 12 = ( 53 )12 = 12512
1124 = 11 2 . 12 = ( 112 )12 = 2212
Ta có 12512 < 2212
=> 526 < 1124
Vậy 526 < 1124
a, Ta có:\(8^{10}=\left(2^3\right)^{10}=2^{30}\)
\(1024^3=\left(2^{10}\right)^3=2^{30}\)
Vậy \(8^{10}=1024^3\)
b, Dựa theo ý a nhưng cơ số là 5\(\Rightarrow25^7>125^3\)
c, Ta có: \(49^{10}\)giữ nguyên
\(625^5=\left(25^2\right)^5=25^{10}\)
a/ Ta có: 816 = 816
10243 = (210)3 = 230 = (23)10 = 810
Vì 16 > 10 nên 816 > 810
Vậy 816 > 10243
b/ Ta có: 257 = (52)7 = 514
1253 = (53)3 = 59
Vì 14 > 9 nên 514 > 59
Vậy 257 > 1253
c/ Ta có: 4910 = (72)10 = 720
6255 = (54)5 = 520
Vì 7>5 nên 720 > 520
Vậy 4910 > 6255.
625^5=(5^4)^5=5^20
125^7=(5^3)^7=5^21
mà 5^20<5^21 =>625^5<125^7
Ta có:
\(625^5=\left(5^4\right)^5=5^{20}\)
\(125^7=\left(5^3\right)^7=5^{21}\)
Vì \(5^{20}< 5^{21}\)
Vậy \(625^5< 125^7\)
6255 và 1257
6255 = (54)5 = 520
1257 = (53)7 = 521
Vì 520 < 521
Vậy 6255 < 1257