Chứng tỏ rằng tổng sau luôn chia hết cho 15 :
2^0+2^1+2^2+......+2^15
Nhanh hộ mk nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ko có kết quả nha vì nếu n là số lẻ thì n+2=s lẻ n+6=s lẻ mà s lẻ.s lẻ=s lẻ
a) ab=a.10+b
ba=b.10+a
ab-ba=10a+b-10b-a
=9a-9.b
Giả sử a lớn hơn b n đơn vị, ta có:
(b+n)9-9b
=n.9 => ab-ba luôn chia hết cho 9
b) ab=10a+b
ba=10b+a
ab+ba=10a+a+10b+b
=11a+11b
=(a+b)11
=> ab+ba luôn chia hết cho 11
chúc bạn học tốt nha
Ta có: ab - ba = 10a + b - (10b + a) = 10a + b - 10b - a = 9a - 9b = 9 x (a - b)
Vì a > b nên a - b dương => 9 x (a - b) chia hết cho 9
ab + ba = 10a + b + 10b + a = 11a + 11b = 11 x (a + b) chia hết cho 11
a) Vì tổng tận cùng là 0 nên chia hết cho 2;5
b) Vì ba số tự nhiên liên tiếp luôn luôn có số chẵn ba số tự nhiên liên tiếp luôn luôn có 1 số chia hết cho 3
nên chia hết cho 2 ;3
Tích đúng nha
Giải:
Ta có a chia cho 72 dư 24
\(\Rightarrow a=72m+24\)
\(\Leftrightarrow a=2\left(36m+12\right)\) \(⋮\) 2
hay : \(a=3\left(24m+8\right)⋮3\)
hay: \(a=6\left(12m+4\right)⋮6\)
Vậy: \(a\) chia hết cho 2;3 và 6
Bài 2: Ta có: 60.n+45 = 15.4.n+15.3
= \(15\left(4n+3\right)\) \(⋮\) \(15\)
Lại có: 60.n+45 = \(30.2.n+30+15\)
\(=30.\left(2n+1\right)+15\)
Do 30.(2n+1) \(⋮\) 30 mà 15 \(⋮̸\)30
\(̸\)\(\Rightarrow30.\left(2n+1\right)+15\) \(⋮̸\) 30
hay: \(60.n+45\) \(⋮̸\) \(30\)
Vậy: 60.n+45 chia hết cho 15 nhưng ko chia hết cho 30.
a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2 nhưng 10615 không chia hết cho 2
10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9
c, B = 102010 - 4
10 \(\equiv\) 1 (mod 3)
102010 \(\equiv\) 12010 (mod 3)
4 \(\equiv\) 1(mod 3)
⇒ 102010 - 4 \(\equiv\) 12010 - 1 (mod 3)
⇒ 102010 - 4 \(\equiv\) 0 (mod 3)
⇒ 102010 - 4 \(⋮\) 3
a) +) Nếu 2 số đó cùng chẵn \(\Rightarrow\)cả 2 số đó đều \(⋮2\)\(\Rightarrow\)Tổng \(⋮2\)(1)
+) Nếu 2 số đó cùng lẻ
Gọi 2 số lẻ lần lượt là \(2a+1\)và \(2b+1\)( \(a,b\inℕ\))
Ta có: \(\left(2a+1\right)+\left(2b+1\right)=4b+2=2\left(2b+1\right)⋮2\)(2)
Từ (1) và (2) \(\Rightarrowđpcm\)
b) Gọi 3 số tự nhiên liên tiếp là \(a\), \(a+1\), \(a+2\)( \(a\inℕ\))
Ta có: \(a+\left(a+1\right)+\left(a+2\right)=3a+3=3\left(a+1\right)⋮3\)
\(\Rightarrowđpcm\)
Đặt tổng trên = A
Có : A = 1+2+2^2+...+2^15
= (1+2+2^2+2^3)+(2^4+2^5+2^6+2^7)+....+(2^12+2^13+2^14+2^15)
= 15 + 2^4.(1+2+2^2+2^3)+...+2^12.(1+2+2^2+2^3)
= 15+2^4.15+...+2^12.15
= 15.(1+2^4+...+2^12) chia hết cho 15
=> ĐPCM
k mk nha