chứng minh 1/[a(a-b)(a-c)]+1/[b(b-c)(b-a)]+1/[c(c-a)(c-b)=1/abc]
ai giải nhanh nhất mình like cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhầm làm lại nha ^^
(a+b+c)^2=a^2+b^2+c^2
=>a^2+b^2+c^2+2ab+2bc+2ac=a^2+b^2+c^2
=>2(ab+bc+ac)=0
=>ab+bc+ac=0
=>(ab+bc+ac)/abc=0
=>ab/abc+bc/abc+ac/abc=0
=>1/c+1/a+1/b=0
=> 1/a+1/b=-1/c
=> (1/a+1/b)^3=(-1/c)^3
=> 1/a^3+1/b^3+3/ab(1/a+1/b)=-1/c^3
=> 1/a^3+1/b^3+1/c^3+3/ab.(-1/c)=0
=> 1/a^3+1/b^3+1/c^3-3/abc=0
=> 1/a^3+1/b^3+1/c^3=3/abc (đpcm)
(a+b+c)^2=a^2+b^2+c^2
a^2+b^2+c^2+2ab+2bc+2ac=a^2+b^2+c^2
2(ab+bc+ac)=0
ab+bc+ac=0
(ab+bc+ac)/abc=0
ab/abc+bc/abc+ac/abc=0
1/c+1/a+1/b=0
=> 1/a+1/b=-1/c
=> (1/a+1/b)^3=(-1/c)^3
=> 1/a^3+1/b^3+3.(1/a.)(1/b).(1/a+1/b)=-1/c^3
=> 1/a^3+1/b^3+1/c^3.3ab.(-1/c)=0
=> 1/a^3+1/b^3+1/c^3=3/abc
\(\left\{{}\begin{matrix}ab+bc+ca=abc\\a+b+c=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}abc-ab-bc-ca=0\\a+b+c-1=0\end{matrix}\right.\)
\(\left(a-1\right)\left(b-1\right)\left(c-1\right)=\left(a-1\right)\left(bc-b-c+1\right)\)
\(=abc-ab-ac+a-bc+b+c-1\)
\(=\left(abc-ab-bc-ca\right)+\left(a+b+c-1\right)\)
\(=0+0=0\) (ddpcm)
\(VT=\left(a-1\right)\left(b-1\right)\left(c-1\right)\\ =\left(ab-a-b+1\right)\left(c-1\right)\\ =abc-ab-ac+a-bc+b+c-1\\ =abc-\left(ab+bc+ca\right)+\left(a+b+c\right)-1\\ =abc-abc+1-1=0=VP\)
a,a+b+c=0 <=>c=-a-b
Khi đ f(x)=ax^2+bx-a-b
f(x)=a(x^2-1)+b(x-1)=(x-1)(ax+a+b)
=>f(x) có nghiệm x=1
b,a-b+c=0 <=>c=b-a
Khi đó f(x)=ax^2+bx+b-a
f(x)=a(x^2-1)+b(x+1)=(x+1)(ax-a+b)
=>f(x) có nghiệm x=-1
\(abc=1\Rightarrow c=\frac{1}{ab}\)
\(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\Leftrightarrow a+b+\frac{1}{ab}=\frac{1}{a}+\frac{1}{b}+ab\)
\(\Leftrightarrow\left(ab-a-b+1\right)-\left(\frac{1}{ab}-\frac{1}{a}-\frac{1}{b}+1\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(b-1\right)-\left(1-\frac{1}{a}\right)\left(1-\frac{1}{b}\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(b-1\right)-\frac{\left(a-1\right)\left(b-1\right)}{ab}=0\)
\(\Leftrightarrow\left(a-1\right)\left(b-1\right)\left(1-\frac{1}{ab}\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)=0\)
\(\Leftrightarrow a=1\text{ hoặc }b=1\text{ hoặc }c=1\)
Cách khác: Nhân tung \(\left(a-1\right)\left(b-1\right)\left(c-1\right)\) ra, dựa vào giả thiết để suy ra no bằng 0.
1) a3+b3+c3-3abc = (a+b)3-3ab(a+b)+c3-3abc
= (a+b+c)(a2+2ab+b2-ab-ac+c2) -3ab(a+b+c)
= (a+b+c)( a2+b2+c2-ab-bc-ca)
Ta có: \(\frac{1}{a\left(a-b\right)\left(a-c\right)}+\frac{1}{b\left(b-c\right)\left(b-a\right)}+\frac{1}{c\left(c-a\right)\left(b-c\right)}=\frac{-1}{a\left(a-b\right)\left(c-a\right)}+\frac{-1}{b\left(b-c\right)\left(a-b\right)}+\frac{-1}{c\left(c-a\right)\left(b-c\right)}=\frac{-bc\left(b-c\right)-ac\left(c-a\right)-ab\left(a-b\right)}{abc\left(a-b\right)\left(c-a\right)\left(b-c\right)}\)
Xét tử số ta có
-bc(b-c)-ac(c-a)-ab(a-b)=-bc(b-c)-ac2+a2c-a2b+ab2
=-bc(b-c)+a(b2-c2)-a2(b-c)
=-bc(b-c)+a(b+c)(b-c)-a2(b-c)
=-bc(b-c)+(ab+ac)(b-c)-a2(b-c)
=(b-c)(-bc+ab+ac-a2)
=(b-c)[a(c-a)-b(c-a)]=(b-c)(c-a)(a-b)
Đặt biểu thức đề bài cho là A
Theo kết quả như trên A trở thành
\(\frac{\left(b-c\right)\left(c-a\right)\left(a-b\right)}{abc\left(a-b\right)\left(c-a\right)\left(b-c\right)}=\frac{1}{abc}\)
=> đpcm