chungto 2n+1va 4n+1la hai songuyen to cunh nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bai giai
Goi UCLN( 2n+1,4n+3) la : a
=> (2n+1)chia het cho a; (4n+3)chia het cho a.
=>2.(2n+1) chia het cho a; (4n+3) chia het cho a .
=> (4n+2) chia het cho a; (4n+3) chia het cho a.
=> [(4n + 3 ) - ( 4n + 2 )] chia het cho a.
=> 1 chia het cho a.
=> a = 1
=> UCLN(2n+1,4n+3) = 1
Vay 2n+1 va 4n+3 la 2 so nguyen to cung nhau.
Tham khao nha .
Gọi d ∈ ƯC (2n + 1 ; 4n + 3)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\4n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(2n+1\right)⋮d\\4n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4n+2⋮d\\4n+3⋮d\end{cases}}\)
=> (4n + 3) - (4n + 2)\(⋮\)d
=> 1\(⋮\)d
=> d = 1
Vậy 2n + 1 và 4n + 3 là 2 số nguyên tố cùng nhau.
Đặt ƯCLN\((2n+1,6n+5)=d\)
Ta có : \(2n+1=3(2n+1)=6n+3\)
\(6n+5=1(6n+5)=6n+5\)
=> \((6n+5)-(6n+3)\)
=> \(2⋮d\)
=> \(ƯCLN(2n+1,6n+5)=1\)\((\)Vì 2n + 1 là số lẻ , 6n + 5 cũng là số lẻ\()\)
=> Điều đó chứng tỏ sai => 2n + 1 và 6n + 5 là hai số nguyên tố cùng nhau
Chúc bạn học tốt :>
goi d la UCLN (2n + 1 , 6n+5 ) (d thuoc N)
=> 2n + 1 chia het d , 6n + 5 chia het d
=>3 . (2n +1) chia het d
=> 6n +3chia hat d
=> (6n + 5 ) - 6n -3 chia het d
=> 2 chia het d
=> d thuoc U(2){1 ,2 }
ma 2n + 1 va 6n + 5 khong chia het cho 2
nen d =1
vay 2n +1 va 6n +5 la 2 so nguyen to cung nhau (dpcm)
đặt ước chung lơn nhất là d
ta có 2n +3 chia hết cho d
n + 2 chia hết cho d
=> 2(n+2 ) chia hết cho d
=> 2n + 4 chia hết cho d
=> 2n + 4 -2n - 3 chia hết ch d
=> 1 chia hết cho d
=> d= 1
Đặt UCLN(2n + 3 ; 4n + 8) = d
2n + 3 chia hết cho d => 4n + 6 chia het cho d
< = > [(4n + 8) - (4n + 6)] chia hết cho d
2 chia hết cho d mà 2n + 3 lẻ
=> UCLN(2n + 3 ; 4n + 8) = 1
Vì 2n+3 và 4n+8 nguyên tố cùng nhau nên có : ƯCLN ( 2n+3 , 4n+8 ) = 1
Có : 2n + 3 = 2n.2+3.2
= 4n +6
Lại có : (4n+8) - (4n+6) chia hết cho d
= 2 chia hết cho d
Nhưng 2 là số lẻ nên ƯCLN ( 2n+3,4n+8)=1
Vậy 2n+3 và 4n+8 nguyên tố cùng nhau
Tick cho mình nha !!!!!!!
Gọi d\(\in\)ƯC(n+1, 2n+5)
Ta có 2n+5 chia hết cho d
2(n+1) chia hết cho d
=> (2n+5)-2(n+1) chia hết cho d => 3 chia hết cho d => ƯC(n+1, 2n+5) = {1 ; 3}
Vậy 4 không thể là ước chung của n+1 và 2n+5
a) Gọi d là ƯC( 7n + 10 ; 5n + 7 )
=> \(\hept{\begin{cases}7n+10⋮d\\5n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(7n+10\right)⋮d\\7\left(5n+7\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}35n+50⋮d\\35n+49⋮d\end{cases}}\)
=> ( 35n + 50 ) - ( 35n + 49 ) chia hết cho d
=> 35n + 50 - 35n - 49 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN( 7n + 10 ; 5n + 7 ) = 1
=> 7n + 10 ; 5n + 7 là hai số nguyên tố cùng nhau ( đpcm )
b) Gọi d là ƯC( 2n + 3 ; 4n + 8 )
=> \(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)
=> ( 4n + 8 ) - ( 4n + 6 ) chia hết cho d
=> 4n + 8 - 4n - 6 chia hết cho d
=> 2 chia hết cho d
=> d ∈ { 1 ; 2 }
Với d = 2 => \(2n+3⋮̸̸d\)
=> d = 1
=> ƯCLN( 2n + 3 ; 4n + 8 ) = 1
=> 2n + 3 ; 4n + 8 là hai số nguyên tố cùng nhau ( đpcm )
Gọi d là ƯCLN(2n+1, 4n+1), d \(\in\)N*
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\4n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+1\right)⋮d\\4n+1⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+2⋮d\\4n+1⋮d\end{cases}}}\)
\(\Rightarrow\left(4n+2\right)-\left(4n+1\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+1,4n+1\right)=1\)
\(\Rightarrow\)2n+1 và 4n+1 là hai số nguyên tố cùng nhau.