K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi UCLN(3k+2,5k+3) là d (d thuộc N*)

3k+2 chia hết cho d => 15k+10 chia hết cho d

5k+3 chia hết cho d => 15k+9 chia hết cho d

=> 15k+10-15k-9 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N*

=> d=1

=> 3k+2 và 5k+3 nguyên tố cùng nhau

10 tháng 12 2015

Goi b la so nghuyen to lon hon 3  chia cho 3 xay ra 3 truong hop                                                                                                                 truong hop 1:b chia het cho 3 suy ra b khong phai la so nghuyen to    (khong duoc)                                                                                  truong hop 2 :b chia cho 3 du 1    (duoc                                                                                                                                                  truong hop 3:b cia cho 3 du 2     (duoc)

24 tháng 6 2022

b) vì p là số nguyên tố>3(gt)

=>p có dạng 3k+1 howacj 3k+2

Nếu p=3k+2

=> p+4=3k+6 ⋮ 3

mà p+4 là số nguyên tố>3(do p>3)

=>p+4=3k+6 không thỏa mãn p+4 là số nguyên tố

Nếu p=3k+1

=> p+4=3k+5 (hợp lí)

vậy p+8 là hợp số

=>p+8=3k+9 ⋮ 3

=>p+8 là hợp số

c)vì p là số nguyên tố>3(gt)

=>p lẻ =>(p-1)(p+1) là tích 2 số chẵn liên tiếp

g/s với kϵN ta có 2k(2k+2)là tích 2 chẵn liên tiếp

2k(2k+2)=4k(k+1)

với kϵN ta có k(k+1)là tích 2 số tự nhiên liên tiếp

=> k(k+1)⋮2

=>4k(k+1)⋮8

=>tích 2 số tự nhiên liên tiếp luôn chia hết cho 8

=>(p-1)(p+1) ⋮ 8 (1)

ta có p-1; p; p+1 là 3 số tự nhiên liên tiếp

=>(p-1)p(p+1)⋮3

mà p là số nguyên tố>3(gt) => p không chia hết cho 3

=> (p-1)(p+1) ⋮ 3 (2)

từ (1),(2) kết hợp với 3; 8 là 2 số nguyên tố cùng nhau

=> (p-1)(p+1) ⋮ (3.8)

=> (p-1)(p+1) ⋮ 24

13 tháng 12 2016

1. Vì p+3>2 =>p+3 là số lẻ =>p là số chẵn mà p là số nguyên tố =>p=2

2.Ta gọi ƯCLN(n+1;2n+3) là a với a là số tự nhiên

=>n+1;2n+3 chia hết cho a

=>2.(n+1);2n+3 chia hết cho a

=>2n+2;2n+3 chia hết cho a

=>(2n+3)-(2n+2) chia hết cho a

=>1 chia hết cho a

=>a=1

=>n+1 và 2n+3 là hai số nguyên tố cùng nhau

8 tháng 6 2023

Gọi \(ƯCLN\left(n+3,2n+5\right)\) là \(d\left(d\in N^{\circledast}\right)\) 

\(=>n+3⋮d;2n+5⋮d\)

\(=>2\left(n+3\right)⋮d;2n+5⋮d\)

\(=>2n+6⋮d;2n+5⋮d\)

\(=>\left(2n+6\right)-\left(2n+5\right)⋮d\)

\(=>1⋮d\)

\(=>d=1\)

 Vậy n+3 và 2n+5 là 2 số nguyên tố cùng nhau với \(n\in N\)

8 tháng 6 2023

Gọi Ư���(�+3,2�+5) là �(�∈�⊛) 

=>�+3⋮�;2�+5⋮�

=>2(�+3)⋮�;2�+5⋮�

=>2�+6⋮�;2�+5⋮�

=>(2�+6)−(2�+5)⋮�

=>1⋮�

=>�=1

 Vậy n+3 và 2n+5 là 2 số nguyên tố cùng nhau với �∈�

30 tháng 1 2020

a, Số dư luôn <3

24 tháng 10 2015

Gọi ƯC(2k+1,9k+4)=d

Ta có: 2k+1 chia hết cho d=>9.(2k+1)=18k+9 chia hết cho d

           9k+4 chia hết cho d=>2.(9k+4)=18k+8 chia hết cho d

=>18k+9-(18k+8) chia hết cho d

=>1 chia hết cho d

=>d=1

=>ƯC(2k+1,9k+4)=1

=>2k+1 và 9k+4 là 2 số nguyên tố cùng nhau

14 tháng 7 2016

a) Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)

=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d

=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d

=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d

=> (6n + 15) - (6n + 14) chia hết cho d

=> 6n + 15 - 6n - 14 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(2n+5; 3n+7) = 1

=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)

Câu b lm tương tự

14 tháng 7 2016

 Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)

=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d

=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d

=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d

=> (6n + 15) - (6n + 14) chia hết cho d

=> 6n + 15 - 6n - 14 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(2n+5; 3n+7) = 1

=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)

Câu b lm tương tự

21 tháng 1 2016

Giúp mình với
(-3)2+33-(-3)0
Đáp số là 35
 

21 tháng 1 2016

Vì a và b đều có Ức chung là One