cho A và B là 2 góc có cạnh tương ứng \(\perp\)biết \(\widehat{A}\) \(-\)\(\widehat{B}\)= 40 độ. Tính \(\widehat{A}\)Và \(\widehat{B}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
làm tương tự
Bài 1 Cho tam giác ABC có góc A= 40 độ,AB=AC.Gọi M Là trung điểm của BC tính các góc của mỗi tam giác AMB và tam giác AMC
bài làm
Bài 1:
-Vì M là trung điểm nên CM=BM
-Vì AM chung và theo GT AB=AC nên Tam giác ABM=tam giac ACM
Góc A=40 độ=>Góc MAB=MAC=20
Vì góc AMB+góc AMC=180 độ(2 góc kề bù) mà góc AMB=AMC nên AMB=AMC=90 độ(2 góc tương ứng)
=>góc ABM=góc ACM=70 độ
Vậy Góc A=Góc C=70 độ
Góc AMC=góc AMB=90 độ
Góc CAM=góc BAM=20 độ
Thanks nhá
a) Các tia Om, On tương ứng là tia phân giác của góc yOz và xOz vì:
Tia Om nằm trong góc yOz và \(\widehat {yOm} = \widehat {mOz}\)
Tia On nằm trong góc xOz và \(\widehat {xOn} = \widehat {nOz}\)
b) Vì các tia Om, On tương ứng là tia phân giác của góc yOz và xOz nên: \(\widehat {yOm} = \widehat {mOz} = \frac{1}{2}.\widehat {yOz};\widehat {xOn} = \widehat {nOz} = \frac{1}{2}.\widehat {xOz}\)
Mà tia Oz nằm trong góc xOy nên \(\widehat {yOz} + \widehat {xOz} = \widehat {xOy}\)
\( \Rightarrow \widehat {mOz} + \widehat {zOn} = \frac{1}{2}.\widehat {yOz} + \frac{1}{2}.\widehat {xOz} = \frac{1}{2}.\widehat {xOy}\)
Mà tia Oz nằm trong góc mOn nên \(\widehat {mOz} + \widehat {zOn} = \widehat {mOn}\) và \(\widehat {xOy} = 90^\circ \)
\( \Rightarrow \widehat {mOn} = \frac{1}{2}.90^\circ = 45^\circ \)
Vì \(\widehat{A}-\widehat{B}=\widehat{B}-\widehat{C}\) nên \(\widehat{A}-2\widehat{B}+\widehat{C}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{A}-2\widehat{B}+\widehat{C}=0^0\left(1\right)\\\widehat{A}+\widehat{B}+\widehat{C}=180^0\left(2\right)\end{matrix}\right.\)
Trừ \(\left(2\right)\) cho \(\left(1\right)\), ta được \(3\widehat{B}=180^0\Rightarrow\widehat{B}=60^0\)
\(\Rightarrow\widehat{A}+\widehat{C}=120^0\)
Vậy GTLN của \(\widehat{A}\) là \(119^0\) vì \(\widehat{C}>0\)
Áp dụng định lí cosin trong tam giác ABC, ta có:
\(\begin{array}{l}{c^2} = {b^2} + {a^2} - 2ab\cos C\\ \Leftrightarrow {c^2} = 26,{4^2} + 49,{4^2} - 2.26,4.49,4\cos {47^ \circ }20'\\ \Rightarrow c \approx 37\end{array}\)
Áp dụng định lí sin, ta có: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}}\)
\(\begin{array}{l} \Leftrightarrow \frac{{49,4}}{{\sin A}} = \frac{{26,4}}{{\sin B}} = \frac{{37}}{{\sin {{47}^ \circ }20'}}\\ \Rightarrow \sin A = \frac{{49,4.\sin {{47}^ \circ }20'}}{{37}} \approx 0,982 \Rightarrow \widehat A \approx {79^ \circ }\\ \Rightarrow \widehat B \approx {180^ \circ } - {79^ \circ } - {47^ \circ }20' = {53^ \circ }40'\end{array}\)
Lời giải:
$\widehat{DAC}=\widehat{BAC}-\widehat{BAE}-\widehat{EAD}=90^0-20^0-30^0=40^0$
Theo đề ra ta có :
\(\Rightarrow\hept{\begin{cases}A-B=40^o\\A+B=90^o\end{cases}}\)
Góc A sẽ bằng:
(90 + 40) :2 = 65o
Góc B sẽ bằng :
90o - 65o = 25o
Vậy ...............
Theo de bai ta co :
A-B=40°
A+B=90°
Goc A se bang :
(90+40):2=65°
Goc B se bang :
90°-65°=25°
Dap so : ......