Chứng minh rằng trong một tam giác có ít nhất một góc lớn hơn hoặc bằng 60 độ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/Giả sử trong 1 tam giác có 2 hóc tù thì tổng 3 góc của tam giác đó sẽ lớn hơn 180 độ
=>trong 1 tam giác chỉ có duy nhất 1 góc tù
2/Trong 1 tam giác nếu góc nhỏ nhất bằng 60 độ thì tổng 3 góc của tam giác đó sẽ lớn hơn 180 độ
=> trong một tam giác góc nhỏ nhất không thể lớn hơn 60 độ
3/Xét tam giác AMB = tam giác AMC (c.c.c)
=> góc BMA = góc CMA
Mặt khác góc BMA + góc CMA = 180 độ
=> góc BMA = góc CMA = 90 độ
=> AM vuông góc BC
=> AM là đường cao của tam giác hạ từ đỉnh A
Tam giác BMA = tam giác CMA
=> góc BAM = góc CAM
=> AM là tia phân giác của góc A
Tham khảo:
Góc đối diện với cạnh bé hơn là góc bé hơn
Mà AB là cạnh nhỏ nhất
=> góc C là góc nhỏ nhất
Vì: góc A + góc B + góc C = 180 độ
=> góc C ≤ 180 độ : 3
góc C ≤ 60 độ
Góc đối diện với cạnh bé hơn là góc bé hơn
Mà AB là cạnh nhỏ nhất
=> góc C là góc nhỏ nhất
Vì: góc A + góc B + góc C = 180 độ
=> góc C ≤ 180 độ : 3
góc C ≤ 60 độ
a. Ta có :a>hoặc =b ,a>hoặc =c>0
suy ra :b - c<a< b+c
Ta có : a< b+c
suy ra :a+a<b+c+a
suy ra:2a<a+b+c
suy ra :a< a+b+c\2
b. ta có : a> hoặc =b>0 ,a> hoặc =c>0
suy ra :b+c < hoặc = a+a
suy ra : b+c < hoặc = 2a
suy ra :a+b+c< hoặc = 3a
suy ra : a+b+c \3 < hoặc = a
Giả sử cả 3 góc của 1 tam giác đều bé hơn 60 độ. Khi đó tổng 3 góc sẽ bé hơn 180 độ.(vô lí)
Do đó phải có ít nhất 1 góc lớn hơn hoặc bằng 60 độ
Giả sử tam giác ABC không đều không có góc nào nhỏ hơn 60 độ.
\(\Rightarrow\widehat{BAC}=60^o+a;\widehat{ABC}=60^o+b;\widehat{ACB}=60^o+c\) ĐK: \(a;b;c\ge0\) và a;b;c không đồng thời bằng 0.
Mà ta có: \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=60^o+60^o+60^o=180^o\)
\(\Leftrightarrow60^o+a+60^o+b+60^o+c=180^o\)
\(\Leftrightarrow a+b+c=0\)
(mâu thuẫn)
Tam giác ABC không đều có ít nhất một góc trong nhỏ hơn 60o