K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2015

\(S=\frac{\left(x+y\right)^2}{xy}+\frac{\left(x+y\right)^2}{x^2+y^2}=\frac{x^2+y^2+2xy}{xy}+\frac{x^2+y^2+2xy}{x^2+y^2}=\frac{x^2+y^2}{xy}+\frac{2xy}{x^2+y^2}+3\)

\(=\frac{x^2+y^2}{2xy}+\frac{2xy}{x^2+y^2}+\frac{x^2+y^2}{2xy}+3\)

\(\ge2\sqrt{\frac{x^2+y^2}{2xy}.\frac{2xy}{x^2+y^2}}+\frac{2xy}{2xy}+3=6\)

Dấu "=" xảy ra khi x = y.

Vậy GTNN của S là 6.

 

6 tháng 5 2017

áp dụng BĐT\(\frac{1}{x}+\frac{1}{y}>=\frac{4}{x+y}\)(x,y>0)

=>A=\(\frac{1}{xy}+\frac{2}{x^2+y^2}=\frac{2}{2xy}+\frac{2}{x^2+y^2}=2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)>=\frac{2.4}{2xy+X^2+Y^2}=\frac{8}{\left(x+y\right)^2}=8\)

dấu bằng xảy ra khi x=y=1/2

AH
Akai Haruma
Giáo viên
9 tháng 9 2018

Lời giải:
\(D=\frac{x}{y}+\frac{y}{x}+\frac{xy}{x^2+xy+y^2}=\frac{x^2+y^2}{xy}+\frac{xy}{x^2+xy+y^2}\)

\(=\frac{x^2+xy+y^2}{xy}+\frac{xy}{x^2+xy+y^2}-1\)

\(\frac{x^2+xy+y^2}{9xy}+\frac{xy}{x^2+xy+y^2}+\frac{8(x^2+xy+y^2)}{9xy}-1\)

Áp dụng BĐT Cô-si:

\(\frac{x^2+xy+y^2}{9xy}+\frac{xy}{x^2+xy+y^2}\geq 2\sqrt{\frac{x^2+xy+y^2}{9xy}.\frac{xy}{x^2+xy+y^2}}=\frac{2}{3}\)

\(x^2+y^2\geq 2xy\Rightarrow \frac{8(x^2+xy+y^2)}{9xy}\geq \frac{8.3xy}{9xy}=\frac{8}{3}\)

\(\Rightarrow D\geq \frac{2}{3}+\frac{8}{3}-1=\frac{7}{3}=D_{\min}\)

Dấu "=" xảy ra khi $x=y$

em xin lỗi chớ em mới lớp 6 thui anh Đức ạ

24 tháng 1 2016

Cho x,y>0 va x+y=1.tim GTNN A= 1/(x^2+y^2) +1/xy

2 tháng 9 2015

mình biết làm nhưng dài quá bạn tra trên google là đc

AH
Akai Haruma
Giáo viên
6 tháng 7 2021

Bạn cần viết đề bằng công thức toán để được hỗ trợ tốt hơn.

9 tháng 11 2018

\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{2xy}\ge\dfrac{4}{\left(x+y\right)^2}+\dfrac{1}{2xy}\ge\dfrac{4}{1^2}+\dfrac{1}{\dfrac{2.\left(x+y\right)^2}{4}}\ge4+2=6\)

Dấu "=" xảy ra <=> x = y = 0,5