K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2019

a ) Áp dụng BĐT Cô-si với 2 số x ; y > 0 , ta có :

\(x^2+y^2+\dfrac{1}{xy}\ge\dfrac{\left(x+y\right)^2}{2}+\dfrac{1}{\dfrac{\left(x+y\right)^2}{4}}=\dfrac{2^2}{2}+\dfrac{1}{\dfrac{2^2}{4}}=2+1=3\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=1\)

Vậy ...

b ) Áp dụng BĐT Cô-si với 2 số x ; y > 0 , ta có :

\(x+y+\dfrac{1}{xy}\ge3\sqrt[3]{xy.\dfrac{1}{xy}}=3\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=\dfrac{1}{xy}\)

\(\Leftrightarrow x^2y=y^2x=1\)

\(\Leftrightarrow x^3y^3=1\Leftrightarrow xy=1\left(x;y>0\right)\)

\(\Leftrightarrow x=y=1\)

Vậy ...

15 tháng 9 2017

Áp dụng bất đẳng thức: x2 + a2y2 \(\ge\)2axy, ta có:

\(\frac{1+\sqrt{5}}{2}\left(xy+yz+zx\right)\le\frac{\frac{1+\sqrt{5}}{2}\left(x^2+y^2\right)+\left[y^2+\left(\frac{1+\sqrt{5}}{2}\right)^2x^2\right]+\left[\left(\frac{1+\sqrt{5}}{2}\right)^2z^2+x^2\right]}{2}\)=

\(\frac{\left(\frac{1+\sqrt{5}}{2}+1\right)\left(x^2+y^2\right)+2\left(\frac{1+\sqrt{5}}{2}\right)^2z^2}{2}\)

15 tháng 9 2017

\(\Rightarrow\left(1+\sqrt{5}\right)\le\frac{3+\sqrt{5}}{2}\left(x^2+y^2\right)+\left(3+\sqrt{5}\right)z^2\)\(\Rightarrow x^2+y^2-2z^2\ge\sqrt{5}-1\)\(\Rightarrow P\ge\sqrt{5}-1\)

Vậy GTNN của P là \(\sqrt{5}-1\)khi \(x=y=\frac{1+\sqrt{5}}{2}z.\)

29 tháng 12 2019

\(Q=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy+2016=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{4xy}+4xy+\frac{5}{4xy}+2016\)

Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\). Dấu "=" khi a=b (bạn tự chứng minh)

\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{\left(x+y\right)^2}=4\)

Vì x>0, y>0 nên xy>0

Áp dụng bất đẳng thức Cô si cho 2 số dương

\(\frac{1}{4xy}+4xy\ge2\sqrt{\frac{1}{4xy}.4xy}=2\)

Ta có: \(1=x+y\ge2\sqrt{xy}\Leftrightarrow\left(x+y\right)^2\ge4xy\Leftrightarrow xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\Rightarrow\frac{5}{4xy}\ge5\)

Dấu "=" khi \(\hept{\begin{cases}x^2+y^2=2xy\\\frac{1}{4xy}=4xy\\x=y\end{cases}\Rightarrow x=y=\frac{1}{2}}\)

\(\Rightarrow Q\ge4+2+5+2016=2027\)

Vậy \(minQ=2027\)khi \(x=y=\frac{1}{2}\)

14 tháng 1 2021

Do x,y∈Z và 3x+2y=1 ⇒xy<0

3x+2y=1⇔y= -x+\(\dfrac{1-x}{2}\)

Đặt \(\dfrac{1-x}{2}\)=t (t ∈ Z)

⇒x = 1 - 2t ; y = 3t - 1

khi đó : H = t\(^2\) -3t + |t| -1

nếu t ≥ 0⇒ H =( t -1 ) - 2 ≥ - 2

Dấu "=" xảy ra ⇔t=1

nếu t < 0 ⇒ H = t\(^2\) -4t - 1 > -1> -2

vậy GTNN của H là -2 khi t=1⇒ \(\begin{cases}x=-1\\y=2\end{cases}\)

23 tháng 4 2018

theo minh de ma

23 tháng 4 2018

đúng rồi dễ mà

22 tháng 8 2015

x^2+y^2=xy => xy >= 0

x^2 + y^2 = xy <=> (x-y)^2 = -xy => -xy >= 0 <=> xy <= 0

=> xy = 0 => x^2+y^2 = 0 <=> x=y=0

F luôn bằng 0 => Max = min = 0

19 tháng 12 2018

\(M=\sqrt{3}xy+y^2=\frac{1}{2}\left(x^2+2\sqrt{3}xy+3y^2\right)-\frac{1}{2}x^2-\frac{1}{2}y^2\)

\(=\frac{1}{2}\left(x+\sqrt{3}y\right)^2-\frac{1}{2}\ge-\frac{1}{2}\).

Nên GTNN của M là \(-\frac{1}{2}\) đạt được khi  \(x=-\sqrt{3}y\Rightarrow x^2=3y^2\Rightarrow4y^2=1\Rightarrow y=\pm\frac{1}{2}\)

 +,Với \(y=\frac{1}{2}\Rightarrow x=-\frac{\sqrt{3}}{2}\)

+,Với \(y=-\frac{1}{2}\Rightarrow x=\frac{\sqrt{3}}{2}\)

Ta lại có:\(M=\sqrt{3}xy+y^2\le\frac{3x^2+y^2}{2}+y^2=\frac{3x^2+3y^2}{2}=\frac{3}{2}\)

Nên GTLN của M là \(\frac{3}{2}\) đạt được khi \(\sqrt{3}x=y\Rightarrow3x^2=y^2\Rightarrow4x^2=1\Rightarrow x=\pm\frac{1}{2}\)

 +,Với \(x=\frac{1}{2}\Rightarrow y=\frac{\sqrt{3}}{2}\)

 +,Với \(x=-\frac{1}{2}\Rightarrow y=-\frac{\sqrt{3}}{2}\)

19 tháng 12 2018

M=3xy+y2=21​(x2+23​xy+3y2)−21​x2−21​y2

=\frac{1}{2}\left(x+\sqrt{3}y\right)^2-\frac{1}{2}\ge-\frac{1}{2}=21​(x+3​y)2−21​≥−21​.

Nên GTNN của M là -\frac{1}{2}−21​ đạt được khi  x=-\sqrt{3}y\Rightarrow x^2=3y^2\Rightarrow4y^2=1\Rightarrow y=\pm\frac{1}{2}x=−3yx2=3y2⇒4y2=1⇒y=±21​

 +,Với y=\frac{1}{2}\Rightarrow x=-\frac{\sqrt{3}}{2}y=21​⇒x=−23​​

+,Với y=-\frac{1}{2}\Rightarrow x=\frac{\sqrt{3}}{2}y=−21​⇒x=23​​

Ta lại có:M=\sqrt{3}xy+y^2\le\frac{3x^2+y^2}{2}+y^2=\frac{3x^2+3y^2}{2}=\frac{3}{2}M=3xy+y2≤23x2+y2​+y2=23x2+3y2​=23​

Nên GTLN của M là \frac{3}{2}23​ đạt được khi \sqrt{3}x=y\Rightarrow3x^2=y^2\Rightarrow4x^2=1\Rightarrow x=\pm\frac{1}{2}3x=y⇒3x2=y2⇒4x2=1⇒x=±21​

 +,Với x=\frac{1}{2}\Rightarrow y=\frac{\sqrt{3}}{2}x=21​⇒y=23​​

 +,Với x=-\frac{1}{2}\Rightarrow y=-\frac{\sqrt{3}}{2}x=−21​⇒y=−23​​

16 tháng 5 2019

Ta có \(x^2+y^2\ge2xy\)=>\(xy\le\frac{1}{2}\)

\(\frac{1}{A}=\frac{1}{-2xy}-\frac{1}{2}\le-1-\frac{1}{2}=-\frac{3}{2}\)

=> \(A\ge-\frac{2}{3}\)

\(MinA=-\frac{2}{3}\)khi \(x=y=\frac{\sqrt{2}}{2}\)

16 tháng 5 2019

Trần Phúc Khang: bài này cần gì phải làm phức tạp vậy a

c/m: \(xy\le\frac{1}{2}\)( như bài Trần Phúc Khang)

Dấu "=" xảy ra <=> x=y=\(\frac{1}{\sqrt{2}}\)

\(A=\frac{-2xy}{1+xy}\ge\frac{-2.\frac{1}{2}}{1+\frac{1}{2}}=-\frac{1}{\frac{3}{2}}=-\frac{2}{3}\)

Dấu "=" xảy ra <=> x=y=\(\frac{1}{\sqrt{2}}\)

KL:.............................