cho x, y, z tm \(\hept{\begin{cases}0< x< y\le1\\0< x< z\le1\\3x+2y+z\le4\end{cases}}\)
Tìm Max P= \(3x^2+2y^2+z^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho \(0< x< y\le z\le1\) và \(3x+2y+z\le4\). Tìm Max \(S=3x^2+2y^2+z^2\) - Hoc24
Tham khảo
Khai triển Abel ta có:
\(S=\left(z-y\right)z+\left(y-x\right)\left(z+2y\right)+x\left(3x+2y+z\right)\)
\(\le\left(z-y\right).1+\left(y-x\right).3+4x=x+2y+z\)
\(=\left(1-1\right)z+\left(1-\dfrac{1}{3}\right)\left(2y+z\right)+\dfrac{1}{3}\left(3x+2y+z\right)\)
\(\le\dfrac{2}{3}.3+\dfrac{1}{3}.4=\dfrac{10}{3}\)
Dấu = xảy ra khi \(x=\dfrac{1}{3},y=z=1\)
\(S=x\left(3x+2y+z\right)+\left(y-x\right)\left(2y+z\right)+\left(z-y\right).y\)
\(S\le4x+3\left(y-x\right)+z-y=x+2y+z\)
\(S\le\dfrac{1}{3}\left(3x+2y+z\right)+\dfrac{2}{3}\left(2y+z\right)\le\dfrac{1}{3}.4+\dfrac{2}{3}.3=\dfrac{10}{3}\)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(\dfrac{1}{3};1;1\right)\)
\(\hept{\begin{cases}x^2-2x\sqrt{y}+2y=x\\y^2-2y\sqrt{z}+2z=y\\z^2-2z\sqrt{x}+2x=z\end{cases}}\)
\(\Leftrightarrow x^2-2x\sqrt{y}+2y+y^2-2y\sqrt{z}+2z+z^2-2z\sqrt{x}+2x=x+y+z\)
\(\Leftrightarrow\left(x-\sqrt{y}\right)^2+\left(y-\sqrt{z}\right)^2+\left(z-\sqrt{x}\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-\sqrt{y}=0\\y-\sqrt{z}=0\\z-\sqrt{x}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\sqrt{y}\\y=\sqrt{z}\\z=\sqrt{x}\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}x=y=z=0\\x=y=z=1\end{cases}}\)
`0<=y,z<=1`
`=>1-y,1-z>=0`
`=>(1-y)(1-z)>=0`
`=>1-y-z+yz>=0`
`=>yz>=y+z-1`
`=>2yz>=2x+2z-2`
`=>P=x^2+y^2+z^2`
`=>P=x^2+(y^2+2yz+z^2)-2yz`
`=>P=x^2+(y+z)^2-2yz`
`=>P<=x^2-2(y+z-1)+(3/2-x)^2`
`=>P<=(3/2-x)^2-2(1/2-x)+x^2`
`=>P<=9/4-3x+x^2-1+2x+x^2`
`=>P<=5/4+2x^2-x`
Giả sử:
`x<=y<=z`
`=>x+x+x<=x+y+z=3/2`
`=>3x<=3/2`
`=>x<=1/2`
`0<=x<=1/2=>2x^2-x<=0`
`=>P<=5/4`
Dấu "=" xảy ra khi `(x,y,z)=(0,1,1/2)` và các hoán vị
Ta có: \(\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\ge0\forall x,y,z\)
\(\Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)
\(\Leftrightarrow2x^2+2y^2+2z^2+x^2+y^2+z^2\ge x^2+y^2+z^2+2xy+2yz+2xz\)
\(\Leftrightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
\(\Leftrightarrow\left(x^2+y^2+z^2\right)\ge\dfrac{9}{4}:3=\dfrac{9}{4}\cdot\dfrac{1}{3}=\dfrac{3}{4}\)
Dấu '=' xảy ra khi \(x=y=z=\dfrac{1}{4}\)
Vậy: \(P_{max}=\dfrac{3}{4}\) khi \(x=y=z=\dfrac{1}{4}\)