Chứng minh :
\(\sqrt{1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}}=1+\frac{1}{k-1}-\frac{1}{k}\)
VỚI \(k\varepsilon N,k\ge2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy: k thuộc N* nên \(\sqrt{k+1}>\sqrt{k}\)
\(\Rightarrow\frac{1}{\left(k+1\right)\sqrt{k}}=\frac{2}{\left(2\sqrt{k+1}\right).\left(\sqrt{k+1}.\sqrt{k}\right)}< \frac{2}{\left(\sqrt{k+1}.\sqrt{k}\right).\left(\sqrt{k+1}+\sqrt{k}\right)}\)
\(=\frac{2\left(\sqrt{k+1}-\sqrt{k}\right)}{\left(\sqrt{k+1}.\sqrt{k}\right)\left(k+1-k\right)}=2\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\right)\)
\(\Rightarrow\frac{1}{\left(k+1\right)\sqrt{k}}< 2\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\right)\)(đpcm).
Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3
Chứng minh rằng với mọi k > 0 ta luôn có....
.
Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3
Chứng minh rằng với mọi k > 0 ta luôn có
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}\)
\(A=1-\frac{1}{n+1}\)
a) Ta có: \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}\)
\(A=1-\frac{1}{n+1}\)
\(A=\frac{n+1}{n+1}-\frac{1}{n+1}\)
\(A=\frac{n}{n+1}\)
Học tốt nha^^
B=1/2.1.2-1/2.2.3+1/2.2.3-1/2.3.4+...+1/2n(n+1)-1/2(n+1)(n+2)
B=1/2[(1/1.2+1/2.3+...+1/n(n+1))-(1/2.3+1/3.4+...+1/(n+1)(n+2))]
Tới đây bạn tự làm tiếp nha, tương tự như bài 1/1.2+1/2.3+..+1/n(n+1) á bạn.Cái này bạn ghi ra bạn sẽ hiểu, mình viết hơi bị lủng củng.
\(\frac{1}{\sqrt{k}\left(k+1\right)}=\frac{1}{\sqrt{k+1}}.\frac{1}{\sqrt{k}\sqrt{k+1}}=\frac{1}{\sqrt{k+1}}.\frac{k+1-k}{\sqrt{k\left(k+1\right)}}=\frac{1}{\sqrt{k+1}}\left(\frac{\left(\sqrt{k+1}-\sqrt{k}\right)\left(\sqrt{k+1}-\sqrt{k}\right)}{\sqrt{k}\sqrt{k+1}}\right)\)
\(=\frac{\left(\sqrt{k+1}-\sqrt{k}\right)}{\sqrt{k}\sqrt{k+1}}.\frac{\left(\sqrt{k+1}+\sqrt{k}\right)}{\sqrt{k+1}}<\frac{\sqrt{k+1}-\sqrt{k}}{\sqrt{k}\sqrt{k+1}}.2\)
Đề đúng sory nhé
ta có \(\left(1+\frac{1}{k}-\frac{1}{k-1}\right)^2\)
= \(1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}\)\(+\frac{2}{k-1}-\frac{2}{k}-\frac{2}{k\left(k-1\right)}\)
=\(1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}+\frac{2k-2k+2-2}{k\left(k-1\right)}\)
= \(1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}\)
=> \(\sqrt{1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}}\)= \(1+\frac{1}{k-1}-\frac{1}{k}\)(đpcm)
CÂU CỦA BẠN KIA SAI R
bạn ấy bị sai cái phần mà cộng cho cả tử và mẫu cho a/k