Giải Phương trình chứa dấu GTTĐ :
l 4x - 3m l = 2x + m
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Thay m=3 vào (1), ta được:
\(x^2-4x+3=0\)
a=1; b=-4; c=3
Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:
\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)
Bài 2:
a) Thay m=0 vào (2), ta được:
\(x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
hay x=1
Phương trình ẩn x : \(m^2x-m^2=4x-3m+2\)( 1 )
\(m^2x-4x=m^2-3m+2\)
\(\left(m^2-4\right)x=\left(m-1\right)\left(m-2\right)\)
- Nếu \(m^2-4\ne0\Leftrightarrow m^2\ne4\Leftrightarrow m\ne\pm2\)
Thì phương trình ( 1 ) có nghiệm duy nhất:
\(x=\frac{\left(m-1\right)\left(m-2\right)}{\left(m-2\right)\left(m+2\right)}=\frac{m-1}{m+2}\)
- Nếu \(m^2-4=0\Leftrightarrow m^2=4\Leftrightarrow m=\pm2\)
- Xét m = 2 thì phương trình ( 1 ) có dạng:
\(\left(2^2-4\right)x=\left(2-1\right)\left(2-2\right)\Leftrightarrow0x=0\)phương trình vô số nghiệm
- Xét m = -2 thì phương trình ( 1 ) có dạng
\(\left[\left(-2\right)^2-4\right]x=\left(-2-1\right)\left(-2-2\right)\)
\(\Leftrightarrow0x=12\)phương trình vô nghiệm
Vậy: Nếu \(m\ne\pm2\) thì phương trình ( 1 ) có nghiệm duy nhất \(x=\frac{m-1}{m+2}\)
Nếu m = 2 thì phương trình ( 1 ) vô số nghiệm
Nếu m = -2 thì phương trình ( 1 ) vô nghiệm
a) |-2x + 3| = 4
=> \(\orbr{\begin{cases}-2x+3=4\\-2x+3=-4\end{cases}}\Rightarrow\orbr{\begin{cases}x=-0,5\\x=3,5\end{cases}}\)
b) \(\left|x-3\right|+2x-5=0\)
=> |x - 3| = -2x + 5 (1)
ĐKXĐ \(-2x+5\ge0\Rightarrow x\le2,5\)
Khi đó (1) <=> \(\orbr{\begin{cases}x-3=-2x+5\\x-3=2x-5\end{cases}}\Rightarrow\orbr{\begin{cases}3x=8\\-x=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{8}{3}\left(\text{loại}\right)\\x=2\left(tm\right)\end{cases}}\)
Vậy x = 2
c) |2x - 1| + 2 = 4x
=> |2x - 1| = 4x - 2(1)
ĐKXĐ \(4x-2\ge0\Rightarrow x\ge\frac{1}{2}\)
Khi đó (1) <=> \(\orbr{\begin{cases}2x-1=4x-2\\2x-1=-4x+2\end{cases}}\Rightarrow\orbr{\begin{cases}-2x=-1\\6x=3\end{cases}}\Rightarrow\orbr{\begin{cases}x=0,5\\x=0,5\end{cases}}\left(tm\right)\)
Vậy x = 0,5
a, \(\left|-2x+3\right|=4\Leftrightarrow\orbr{\begin{cases}-2x+3=4\\-2x+3=-4\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{7}{2}\end{cases}}}\)
b, \(\left|x-3\right|+2x-5=0\Leftrightarrow\left|x-3\right|=-2x+5\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=-2x+5\\-x+3=-2x+5\end{cases}\Leftrightarrow\orbr{\begin{cases}3x-8=0\\x=2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{8}{3}\\x=2\end{cases}}}\)
c, Tương tự như b
<=>\(\left\{{}\begin{matrix}x+6=x.khi.x+6\ge0\Leftrightarrow x\ge-6\left(1\right)\\-\left(x+6\right)=x.khi.x+6< 0\Leftrightarrow x< -6\left(2\right)\end{matrix}\right.\)
Giải pt (1) khi x >= -6 ta được :
x+6 = x
<=> x+6 -x =0
<=> 6 = 0 ( vô lý)
Giải pt (2) khi x < -6 ta được :
-(x+6) = x
<=> -x - 6 -x = 0
<=>-2x-6 =0
<=> -2x = 6
<=> x = -3 ( loại )
Vậy bpt trên vô nghiệm.
<=>{x+6=x.khi.x+6≥0⇔x≥−6(1)−(x+6)=x.khi.x+6<0⇔x<−6(2){x+6=x.khi.x+6≥0⇔x≥−6(1)−(x+6)=x.khi.x+6<0⇔x<−6(2)
Giải pt (1) khi x >= -6 ta được :
x+6 = x
<=> x+6 -x =0
<=> 6 = 0 ( vô lý)
Giải pt (2) khi x < -6 ta được :
-(x+6) = x
<=> -x - 6 -x = 0
<=>-2x-6 =0
<=> -2x = 6
<=> x = -3 ( loại )
Vậy pt trên vô nghiệm.
| 4x - 3m | = 2x + m
=> 4x - 3m \(\in\){ 2x + m; -2x - m }
+) 4x - 3m = 2x + m +) 4x - 3m = -2x - m
4x - 2x = m + 3m 4x + 2x = -m + 3m
2x = 4m 6x = 2m
Mới học lớp 7 nên mình chưa biết " giải phương trình " là gì, mình chỉ biết đến đây thôi :)