Chứng tỏ rằng:
A+2b chia hết cho 3 khi va chỉ khi 2a+b chia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=3+3^2+..+3^{60}\)
\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\)
\(A=3\cdot\left(1+3\right)+3^3\cdot\left(1+3\right)+...+3^{59}\cdot\left(1+3\right)\)
\(A=4\cdot\left(3+3^3+...+3^{59}\right)\)
Vậy A chia hết cho 4
b) \(A=3+3^2+3^3+...+3^{60}\)
\(A=\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\)
\(A=3\cdot\left(1+3+3^2\right)+...+3^{58}\cdot\left(1+3+3^2\right)\)
\(A=13\cdot\left(3+..+3^{58}\right)\)
Vậy A chia hết cho 13
Đặt A = 2a + 7b, B = 4a + 2b
Xét hiệu: 2A - B = 2.(2a + 7b) - (4a + 2b)
= 4a + 14b - 4a - 2b
= 12b
Vì A chia hết cho 3 nên 2A chia hết cho 3; 12b chia hết cho 3
=> B chia hết cho 3 hay 4a + 2b chia hết cho 3 (đpcm)
\(Tacó:\hept{\begin{cases}2a+5⋮7\\7a+7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}5a+2⋮7\\7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}10a+4⋮7\\7⋮7\end{cases}}\)
\(\Rightarrow10a+4+7=10a+11⋮7\left(dpcm\right)\)
b, tự tương
\(a,2a+5⋮7\Leftrightarrow2a+5+28a+28⋮7\) ( vì \(28a+28⋮7\) )
\(\Leftrightarrow30a+33⋮7\)
\(\Leftrightarrow3.\left(10a+11\right)⋮7\)
\(\Leftrightarrow10a+11⋮7\) ( vì \(\left(3;7\right)=1\) )
Vậy \(2a+5⋮7\Leftrightarrow10a+11⋮7\)
Câu b bn xem lại đề hộ mk chút nhé!
Gọi số có 3 chữ số mà có chữ số hàng chục bằng chữ số hàng đơn vị là abb(0<1;b<=9)
ta có tổng các chữ số của nó =7 nên: a+2b=7=> a=7-2b(1)
Ta có: abb= a.100+b.10 +b Thay a= 7-2b vào ta có
abb= (7-2a).100+b.10+b
=700-200b+11b
=700-189b
Vì 700\(⋮\)7 và 189b\(⋮\)7 nên 700-189b \(⋮\)7
vậy abb\(⋮\)7
Vậy số có 3 chữ số có tổng các chữ số =7 và có chữ số hàng chục = chữ số hàng đơn vị thì số đó chia hết cho 7
* m^2+n^2 chia hết cho 3 thì m,n chia hết cho 3
Giả sử m không chia hết cho 3 => m^2 o chia hết cho 3 mà m^2 chia 3 dư 0 hoặc 1 => m^2 chia 3 dư 1 => n^2 chia 3 dư 2 (vô lý)
=>giả sử sai => m chia hết cho 3
Chứng minh tương tự n chia hết cho 3
* m,n chia hết cho 3 => m^2+n^2 chia hết cho 3
Vì m,n chia hết cho 3 => m^2, n^2 chia hết cho 3 => m^2+n^2 chia hết cho 3
Nếu : a+2b chia hết cho 3
=>5.(a+2b) chia hết cho 3
=>5a+10b chia hết cho 3
Mà : 3a và 9 b đều chia hết cho 3
=> 5a+10b-3a-9b chia hết cho 3 hay 2a+b chia hết cho 3 (1)
Nếu : 2a+b chia hết cho 3
Có 3a + 9b đều chia hết cho 3 => 2a+b+3a+9b chia hết cho 3 hay 5a+10b chia hết cho 3
=>5.(a+2b) chia hết cho 3
=> a+2b chia hết cho 3 ( vì 5 và 3 là 2 số nguyên tố cùng nhau ) (2)
Từ (1) và (2) => ĐPCM