K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét tứ giác AHCK có \(\widehat{AHC}+\widehat{AKC}=90^0+90^0=180^0\)

nên AHCK là tứ giác nội tiếp

=>A,H,C,K cùng thuộc một đường tròn

2 tháng 9

nối AC lại với nhau, lấy M là trung điểm AC thì MA=MC=MH=MK( trung tuyến ứng với cạnh huyền)

vậy 4 điểm A,H,C,K cùng thuộc đường tròn tâm M

12 tháng 10 2021

a: Xét tứ giác AMCN có 

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

Suy ra:AN//CM

11 tháng 10 2021

a: Xét ΔAID vuông tại I và ΔCKB vuông tại K có 

AD=CB

\(\widehat{D}=\widehat{B}\)

Do đó: ΔAID=ΔCKB

Suy ra: AI=CK

Xét tứ giác AICK có 

AI//CK

AI=CK

Do đó: AICK là hình bình hành

mà \(\widehat{AIC}=90^0\)

nên AICK là hình chữ nhật

a: Xét ΔBMC vuông tại M và ΔDNC vuông tại N có

góc B=góc D

=>ΔBMC đồng dạng vớiΔDNC

b: Bạn ghi lại đề đi bạn

31 tháng 8 2023

loading... a) Do BM là đường trung tuyến của ∆ABC (gt)

⇒ M là trung điểm của AC

Do D và B đối xứng qua M (gt)

⇒ M là trung điểm của BD

Tứ giác ABCD có:

M là trung điểm của AC (cmt)

M là trung điểm của BD (cmt)

⇒ ABCD là hình bình hành

b) Do ABCD là hình bình hành (cmt)

⇒ AB // CD

Mà DH ⊥ AB

⇒ DH ⊥ AC

c) Do ABCD là hình bình hành

⇒ AB // CD

Mà BK ⊥ CD

⇒ BK ⊥ AB

⇒ ∠KBH = 90⁰

Tứ giác BHDK có:

∠BKD = ∠KBH = ∠BHD = 90⁰

⇒ BHDK là hình chữ nhật

Mà M là trung điểm BD

⇒ M là trung điểm của HK

⇒ M, H, K thẳng hàng

Do đó chứng minh MH ⊥ MK là sai. Em xem lại đề ở câu c nhé

dạ cô vẽ dùng em hình

a, xét tứ giác AHMK có

góc MHA=90 độ( MH ⊥ Ab-gt)

góc MKA=90 độ( MK⊥ AC-gt)

góc HAK= 90 độ ( tam giác ABC vuông tại A-gt)

-> AHMK là hcn ( tứ giác có 3 góc vuông là hcn)2). Có : MH vuông góc với AB ( gt )

              AC vuông góc với AB ( 
Δ
ABC vuông tại A)

=> MH//AC 

Xét tam giác ABc có

MH//AC( cmt)

M là trung điểm BC (gt)

=> H là trung điểm AB (định lý đường trung bình của tam giác)(đpcm)
. Có: MK vuông góc AC ( gt)

AB vuông góc AC( tam giác ABC vuông tại A )

=> MK//AB

Có:MK//AB(cmt)

M là trung điểm BC ( gt)

=> K là trung điểm AC ( định lý đường trung bình của tam giác )

Có : H là trung điểm AB ( cmt)

=. BH=1/2AB

Xét tam giác ABC có

M là trung điểm BC(cmt)

K là trung điểm AC ( cmt)

=> MK là đưởng trung bình của tam giác ABC( dấu hiệu nhận biết)

=> MK=1/2AB

( tính chất đường trung bình của tam giác)

=> MK//AB(tính chất đường trung bình của tam giác) hay MK//BH

Có MK=1/2AB

BH= 1/2AB

=> MK=BH

Mà MK//BH(cmt)

=> BMKH là hình bình hành

VÌ BMKH là hình bình hành (cmt)

=> Hai đường chéo HM và BK cắt nhau tại trung điểm mỗi đường 

Mà E là trung điểm HM ( gt)

=> E là trung điểm BK hay ba điểm B; E; K thẳng hàng(dpcm)

mình tự làm ne chắc do mạng mình bị lỗi bắm nhầm phải

a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

góc BAH chung

=>ΔAHB=ΔAKC

b: AH=căn 10^2-8^2=6cm

c: Xét ΔAKE vuông tại K và ΔAHE vuông tại H có

AE chung

AK=AH

=>ΔAKE=ΔAHE

=>góc KAE=góc HAE

=>AE là phân giác của góc BAC

a: Xét ΔAHD vuông tại H và ΔCKB vuông tại K có

AD=CB

\(\widehat{ADH}=\widehat{CBK}\)

Do đó: ΔAHD=ΔCKB

Suy ra: AH=CK

Xét tứ giác AHCK có 

AH//CK

AH=CK

Do đó: AHCK là hình bình hành

b: Ta có: AHCK là hình bình hành

nên Hai đường chéo AC và HK cắt nhau tại trung điểm của mỗi đường

mà O là trung điểm của HK

nên O là trung điểm của AC

hay A,O,C thẳng hàng