Xác định giá trị nhỏ nhất của tỷ số khoảng cách lớn nhất giữa 2 đỉnh và khoảng cách bé nhất giữa 2 đỉnh 1 tam giác
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) giao điểm của các đường phân giác
b) M≡T (điểm T được gọi là điểm Toricenli của tam giác ABC).
hoặc M≡B
nếu bạn nói M trùng B thì phải nói rõ điều kiện đặt cho 3 cạnh của tam giác
Đặt BC=a; AC=b; AB=c
Từ M dựng các đường vuông góc với BC; AC; AB cắt lần lượt tại D;E;F
Đặt MD=x; ME=y; MF=z
\(S_{ABC}=S_{MBC}+S_{MAC}+S_{MAB}=\frac{ax+by+cz}{2}\) áp dụng bđt cosi
\(\frac{ax+by+cz}{3}\ge\sqrt[3]{ax.by.cx}\Rightarrow\frac{ax+by+cz}{2}\ge\frac{3\sqrt[3]{ax.by.cz}}{2}\)
\(\Rightarrow S_{ABC}\ge\frac{3.\sqrt[3]{ax.by.cz}}{2}=\frac{3\sqrt[3]{abc}.\sqrt[3]{xyz}}{2}\Rightarrow\sqrt[3]{xyz}\le\frac{2.S_{ABC}}{3.\sqrt[3]{abc}}\)
\(\Rightarrow xyz\le\frac{8.S^3_{ABC}}{27abc}\) xyz lơn nhất khi \(xyz=\frac{8.S^3_{ABC}}{27abc}=const\)
Dấu = xảy ra khi ax=by=cz \(\Rightarrow S_{MBC}=S_{MAC}=S_{MAB}\)
Nối AM cắt BC tại K, Từ B và C dựng đường vuông góc với AK cắt AK lần lượt tại P và Q
Xét tg MAB và tg MAC có chung đáy AM và S(MAB)=S(MAC) => hai đường cao tương ứng BP=CQ
Xét tg vuông BKP và tg vuông CKQ có
^PBK = ^QCK (góc so le trong)
BP=CQ (cmt)
=> tg BKP = tg CKQ (hai tg vuông có cạnh góc vuông và góc nhọn tương ứng bằng nhau) => BK=CK => AM là trung tuyến của tg ABC
C/m tương tự ta cũng có BM, CM là trung tuyến của tg ABC
=> M là trọng tâm của tg ABC
+ Gọi M ( x 0 ; 2 + 3 x 0 - 1 ) ∈ C , x 0 ≠ 1 .
Phương trình tiếp tuyến tại M có dạng
∆ : y = - 3 x 0 - 1 2 ( x - x 0 ) + 2 + 3 x 0 - 1
+ Giao điểm của ∆ với tiệm cận đứng là A ( 1 ; 2 + 6 x 0 - 1 )
+ Giao điểm của ∆ với tiệm cận ngang là B( 2x0-1; 2).
Ta có S ∆ I A B = 1 2 I A . I B = 1 2 . 6 x 0 - 1 . 2 . x 0 - 1 = 2 . 3 = 6
Tam giác IAB vuông tại I có diện tích không đổi nên chu vi tam giác IAB đạt giá trị nhỏ nhất khi
IA=IB
+Với x 0 = 1 + 3 thì phương trình tiếp tuyến là ∆ : y = - x + 3 + 2 3 . Suy ra
d O , ∆ = 3 + 2 3 2
+ Với x 0 = 1 - 3 thì phương trình tiếp tuyến là ∆ : y = - x + 3 - 2 3 . Suy ra
d O , ∆ = - 3 + 2 3 2
Vậy khoảng cách lớn nhất là 3 + 2 3 2 gần với giá trị 5 nhất trong các đáp án.
Chọn D.