cho ABC là một tam giác cân tại A. gọi X, Y là các điểm lần lượt thuộc các cạnh BC và AC sao cho XY song song với AB. Gọi I là tâm đường tròn ngoại tiếp tam giác CXY và E là trung điểm của BY. Chứng minh rằng góc AEI bằng 90 độ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
Ta có
\(\widehat{B}=\widehat{C}\) (góc ở đáy tg cân ABC)
EK//AB \(\Rightarrow\widehat{EKC}=\widehat{B}\) (góc đồng vị)
\(\Rightarrow\widehat{EKC}=\widehat{C}\) => tg EKC cân tại E => CE=EK
Mà AD=CE
=> AD=EK (1)
Ta có
EK//AB => EK//AD (2)
Từ (1) và (2) => ADKE là hình bình hành (Tứ giác có 1 cặp cạnh đối // và bằng nhau là hbh)
=> MA=MK; MD=ME (Trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)
b/
Ta có \(H\in\left(M;MK\right)\) => MH=MK
Mà MK=MA (cmt)
=> MH=MK=MA
=> tg MHK cân tại M \(\Rightarrow\widehat{MHK}=\widehat{MKH}\)
\(\widehat{HMK}+\widehat{MHK}+\widehat{MKH}=\widehat{HMK}+2\widehat{MHK}=180^o\) (tổng các góc trong của 1 tg = 180 độ)
MH=MK=MA (cmt) => tg MAH cân tại M
\(\Rightarrow\widehat{MAH}=\widehat{MHA}\)
\(\widehat{HMK}=\widehat{MAH}+\widehat{MHA}\) (trong tg góc ngoài bằng tổng 2 góc trong không kề với nó)
\(\Rightarrow\widehat{HMK}=2\widehat{MHA}\)
Từ \(\widehat{HMK}+2\widehat{MHK}=180^o\Rightarrow2\widehat{MHA}+2\widehat{MHK}=180^o\)
\(\Rightarrow\widehat{MHA}+\widehat{MHK}=\widehat{AHK}=90^o\Rightarrow AH\perp BC\)
Xét tg vuông ABH và tg vuông ACH có
AH chung
AB=AC (cạnh bên tg cân ABC)
=> tg AHB = tg AHC (Hai tg vuông có cạnh huyền và cạnh góc vuông bằng nhau)
=> HB=HC
a: góc BAC=góc BCA
=>sđ cung BC=sđ cung BA
b: xy//DE
=>góc AED=góc yAE=góc ABC
c: góc AED=góc ABC
=>góc ABC+góc DEC=180 độ
=>BCDE nội tiếp
4) Gọi P, Q lần lượt là tâm của các đường tròn ngoại tiếp tam giác MBK, tam giác MCK và E là trung điểm của đoạn PQ. Vẽ đường kính ND của đường tròn (O) . Chứng minh ba điểm D, E, K thẳng hàng.
Vì N là điểm chính giữa cung nhỏ BC nên DN là trung trực của BC nên DN là phân giác B D C ^
Ta có K Q C ^ = 2 K M C ^ (góc nọi tiếp bằng nửa góc ở tâm trong dường tròn (Q))
N D C ^ = K M C ^ (góc nội tiếp cùng chắn cung N C ⏜ )
Mà B D C ^ = 2 N D C ^ ⇒ K Q C ^ = B D C ^
Xét 2 tam giác BDC & KQC là các các tam giác vuông tại D và Q có hai góc ở ⇒ B C D ^ = B C Q ^ do vậy D, Q, C thẳng hàng nên KQ//PK
Chứng minh tương tự ta có ta có D, P, B thẳng hàng và DQ//PK
Do đó tứ giác PDQK là hình bình hành nên E là trung điểm của PQ cũng là trung điểm của DK. Vậy D, E, K thẳng hàng (điều phải chứng minh).
1). Tam giác ABF và tam giác ACE ần lượt cân tại F, E và
F B A ^ = E C A ^ = A ^ 2 ⇒ Δ A B F ∽ Δ A C E .
2). Giả sử G là giao điểm của BE và CF.
Ta có G F G C = B F C E = A B A C = D B D C ⇒ G D ∥ F B , và F B ∥ A D ta có G ∈ A D .
3). Chứng minh B Q G ^ = Q G A ^ = G A E ^ = G A C ^ + C A E ^ = G A B ^ + B A F ^ = G A F ^ , nên AGQF nội tiếp, và Q P G ^ = G C E ^ = G F Q ^ , suy ra tứ giác FQGP nội tiếp.
1) Chứng minh rằng tam giác \( A B F \) đồng dạng với tam giác \( A C E \):
- Tam giác \(ABF\) và \(ACE\) có:
+ Góc \(A\) chung.
+ Góc \(BAF\) bằng góc \(CAE\) (vì \(AD\) là phân giác của góc \(BAC\) và \(CF\), \(BE\) song song với \(AD\)).
Do đó, tam giác \(ABF\) đồng dạng với tam giác \(ACE\) (theo trường hợp góc-góc).
2) Chứng minh rằng các đường thẳng \(BE\), \(CF\), \(AD\) đồng quy:
- Gọi \(G\) là giao điểm của \(BE\) và \(CF\).
- \(AD\) là phân giác góc \(BAC\), và \(BE\), \(CF\) song song với \(AD\). Do đó, \(G\) cũng nằm trên phân giác \(AD\).
- Vậy \(BE\), \(CF\), \(AD\) đồng quy tại \(G\).
3) Chứng minh rằng các điểm \(A\), \(P\), \(G\), \(Q\), \(F\) cùng thuộc một đường tròn:
- Gọi đường tròn ngoại tiếp tam giác \(GEC\) là \(\omega\).
- \(QE\) cắt \(\omega\) tại \(P\) khác \(E\), vậy \(P\) nằm trên đường tròn \(\omega\).
- \(GQ\) song song với \(AE\), và \(AE\) là đường kính của \(\omega\) (vì \(E\) là trung điểm của \(AC\) và \(G\) nằm trên phân giác của \(BAC\)). Do đó, \(GQ\) là dây cung của \(\omega\).
- \(PF\) là tiếp tuyến của \(\omega\) tại \(P\) (vì \(QE\) là tiếp tuyến và \(PF\) là phần kéo dài của \(QE\)).
- Góc \(PGF\) bằng góc \(GAC\) (cùng chắn cung \(GC\) của \(\omega\)).
- \(AF\) là trung trực của \(AB\), nên \(ABF\) là tam giác cân tại \(A\). Do đó, góc \(AFB\) bằng góc \(ABF\).
- Góc \(ABF\) bằng góc \(GAC\) (do đồng dạng của tam giác \(ABF\) và \(ACE\)).
- Vậy, góc \(PGF\) bằng góc \(AFB\). Do đó, \(A\), \(P\), \(G\), \(Q\), \(F\) cùng thuộc một đường tròn.
Gọi trung điểm của XY, YC và BC lần lượt là M, N và K..
Do I là tâm đường tròn ngoại tiếp tam giác XYC nên \(\widehat{YMI}=\widehat{YNI}=90^o\)
Vậy ta có YMIN là tứ giác nội tiếp hay \(\widehat{IYN}=\widehat{IMN}\Rightarrow\widehat{AYI}=\widehat{EMI}\) (1)
Xét tam giác BYX có E và M lần lượt là trung điểm của YB và YX nên EM song song và bằng một nửa BX.
Ta cũng có ngay E, M, N thẳng hàng.
Do XY // AB nên \(\frac{AY}{AC}=\frac{BX}{BC}\Rightarrow\frac{AY}{BX}=\frac{AC}{BC}\)
\(\Rightarrow\frac{AY}{EM}=\frac{AY}{\frac{BX}{2}}=2.\frac{AY}{BX}=\frac{2.AC}{BC}=\frac{AC}{BK}\)'
Do tam giác ABC cân tại A nên \(AK\perp BC\)
Xét tam giác vuông ABK, theo định nghĩa tỉ số lượng giác thì \(cos\widehat{ABC}=\frac{BK}{AB}\)
Vậy thì \(\frac{YI}{MI}=\frac{1}{sin\widehat{XYK}}=\frac{1}{cos\widehat{YXK}}=\frac{1}{cos\widehat{ABC}}=\frac{1}{\frac{BK}{AB}}=\frac{AB}{BK}=\frac{AC}{BK}\)
Vậy nên \(\frac{AY}{EM}=\frac{YI}{MI}\) (2)
Từ (1) và (2) ta có \(\Delta AYI\sim\Delta EMI\left(c-g-c\right)\Rightarrow\widehat{IEN}=\widehat{IAN}\)
Xét tứ giác AEIN có \(\widehat{IEN}=\widehat{IAN}\) nên nó là tứ giác nội tiếp.
\(\Rightarrow\widehat{AEI}=180^o-\widehat{ANI}=90^o\)
mình xin sửa lại yêu cầu là: chứng minh góc AEI bằng 90
mong các bạn giúp