\(\text{7.}\)
\(\text{a) 2}^x\)\(=\)\(16\)
\(\text{b)}\)\(4^x\)\(=64\)
\(\text{c)}\)\(15^x\)\(=225\)
\(\text{d)}\)\(3^x\)\(.3\)\(=243\)
\(\text{e)}\)\(2^x\)\(.7=\)\(56\)
\(\text{g)}\)\(x^6\)\(:x^3\)\(=125\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Leftrightarrow2x^3-x^2+ax+b=\left(x-1\right)\left(x+1\right)\cdot a\left(x\right)\)
Thay \(x=1\Leftrightarrow2-1+a+b=0\Leftrightarrow a+b=-1\)
Thay \(x=-1\Leftrightarrow-2-1-a+b=0\Leftrightarrow b-a=3\)
Từ đó ta được \(\left\{{}\begin{matrix}a+b=-1\\-a+b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=1\end{matrix}\right.\)
\(b,\Leftrightarrow ax^3+bx^2+2x-1=\left(x-1\right)\left(x+6\right)\cdot b\left(x\right)\)
Thay \(x=1\Leftrightarrow a+b+2-1=0\Leftrightarrow a+b=-1\)
Thay \(x=-6\Leftrightarrow-216a+36b+12-1=0\Leftrightarrow216a-36b=11\)
Từ đó ta được \(\left\{{}\begin{matrix}a+b=-1\\216a-36b=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{25}{252}\\b=-\dfrac{227}{252}\end{matrix}\right.\)
\(c,\Leftrightarrow ax^4+bx^3+1=\left(x+1\right)^2\cdot c\left(x\right)\)
Thay \(x=-1\Leftrightarrow a-b+1=0\Leftrightarrow b=a+1\)
\(\Leftrightarrow ax^4+\left(a+1\right)x^3+1⋮\left(x+1\right)\\ \Leftrightarrow ax^4+ax^3+x^3+1⋮\left(x+1\right)\\ \Leftrightarrow ax^3\left(x+1\right)+\left(x+1\right)\left(x^2-x+1\right)⋮\left(x+1\right)\\ \Leftrightarrow\left(x+1\right)\left(ax^3+x^2-x+1\right)⋮\left(x+1\right)\\ \Leftrightarrow ax^3+x^2-x+1⋮\left(x+1\right)\)
Thay \(x=-1\Leftrightarrow-a+1+1+1=0\Leftrightarrow a=3\Leftrightarrow b=4\)
`a)1/7xx2/7+1/7xx5/7+6/7`
`=1/7xx(2/7+5/7)+6/7`
`=1/7xx1+6/7`
`=1/7+6/7=1`
`b)6/11xx4/9+6/11xx7/9-6/11xx2/9`
`=6/11xx(4/9+7/9-2/9)`
`=6/11xx9/9`
`=6/11`
Sorry nãy ghi thiếu.
`c)4/25xx5/8xx25/4xx24`
`=(4xx5xx25xx24)/(25xx8xx4)`
`=(4xx5xx24)/(4xx8)`
`=(5xx24)/8`
`=5xx3=15`
a. 52 + (x+3) = 52
=> x + 3 = 52 - 52
=> x + 3 = 0
=> x = -3
b. 23 + (x-32) = 53 - 43
=> 8 + (x-9) = 125 - 64
=> x - 9 = 125 - 64 - 8
=> x - 9 = 53
=> x = 53 + 9
=> x = 62
a) \(\sqrt{4x^2+4x+1}=6\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left(2x+1\right)^2=6^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
b) \(\sqrt{4x^2-4\sqrt{7}x+7}=\sqrt{7}\)
\(\Leftrightarrow\sqrt{\left(2x-\sqrt{7}\right)^2}=\sqrt{7}\)
\(\Leftrightarrow\left(2x-\sqrt{7}\right)^2=\left(\sqrt{7}\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\sqrt{7}=\sqrt{7}\\2x-\sqrt{7}=-\sqrt[]{7}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=0\end{matrix}\right.\)
a) \(\sqrt{4x^2+4x+1}=6\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left|2x+1\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
b) \(pt\Leftrightarrow\sqrt{\left(2x-\sqrt{7}\right)^2}=\sqrt{7}\)
\(\Leftrightarrow\left|2x-\sqrt{7}\right|=\sqrt{7}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\sqrt{7}=\sqrt{7}\\2x-\sqrt{7}=-\sqrt{7}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=0\end{matrix}\right.\)
\(\frac{5.2^{18}.3^{18}.2^{12}-2.2^{28}.3^{14}.3^4}{5.2^{28}.3^{18}-7.2^{29}.3^{18}}=\frac{5.2^{30}.3^{18}-2^{29}.3^{18}}{5.2^{28}.3^{18}-7.2^{29}.3^{18}}=\frac{2^{29}.3^{18}\left(5.2-1\right)}{2^{28}.3^{18}\left(5-7.2\right)}\)
\(\frac{2^{29}.3^{18}.9}{2^{28}.3^{18}.-9}=\frac{2.9}{-9}=-2\)
\(4x^2-12x-y^2-3=0\)
\(\Rightarrow4x^2-12x-y^2+9-12=0\)
\(\Rightarrow\left(2x-3\right)^2-\left(y^2+12\right)=0\)
Lập bảng xét dấu:v
b tương tự
a) x4 + 3x3 - 7x2 - 27x - 18
= x4 + x3 + 2x3 + 2x2 - 9x2 - 9x - 18x - 18
= x3 . (x + 1) + 2x2 . (x + 1) - 9x . (x + 1) - 18(x + 1)
= (x + 1)(x3 + 2x2 - 9x - 18)
= (x + 1)[x2 .(x + 2) - 9.(x + 2)]
= (x + 1)(x + 2)(x2 - 32)
= (x + 1)(x + 2)(x + 3)(x - 3)
b) x4 + 3x3 + 3x2 + 3x + 2
= x4 + x3 + 2x3 + 2x2 + x2 + x + 2x + 2
= x3 (x + 1) + 2x2 . (x + 1) + x(x + 1) + 2(x + 1)
= (x + 1)(x3 + 2x2 + x + 2)
= (x + 1)[x2 .(x + 2) + (x + 2)]
= (x + 1)(x + 2)(x2 + 1)
\(x^4+3x^3-7x^2-27x-18\)
\(=\left(x^4+x^3\right)+\left(2x^3+2x^2\right)-\left(9x^2+9x\right)-\left(18x-18\right)\)
\(=x^3\left(x+1\right)+2x^2\left(x+1\right)-9x\left(x+1\right)-18\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3+2x^2-9x-18\right)\)
\(=\left(x+1\right)\left[\left(x^3-3x^2\right)+\left(5x^2-15x\right)+\left(6x-18\right)\right]\)
\(=\left(x+1\right)\left[x^2\left(x-3\right)+5x^2\left(x-3\right)+6\left(x-3\right)\right]\)
\(=\left(x+1\right)\left(x-3\right)\left(x^2+5x+6\right)\)
\(=\left(x+1\right)\left(x-3\right)\left(x+2\right)\left(x+3\right)\)
\(=\left(x+1\right)\left(x+2\right)\left(x+3\right)^2\)
\(a,2^x=16\\ \Rightarrow2^x=2^4\\ \Rightarrow x=4\\ b,4^x=64\\ \Rightarrow4^x=4^3\\ \Rightarrow x=3\\ c,15^x=225\\ \Rightarrow15^x=15^2\\ \Rightarrow x=2\\ d,3^x\cdot3=243\\ \Rightarrow3^x=81\\ \Rightarrow3^x=3^4\\ \Rightarrow x=4\\ e,2^x\cdot7=56\\ \Rightarrow2^x=8\\ \Rightarrow2^x=2^3\\ \Rightarrow x=3\\ g,x^6:x^3=125\\ \Rightarrow x^3=125\\ \Rightarrow x^3=5^3\\ \Rightarrow x=5\)
\(a\)) \(2^x=16\)
\(2^x=2^4\)
\(=>x=4\)
b) \(4^x=64\)
\(4^x=4^3\)
\(=>x=3\)
c) \(15^x=225\)
\(15^x=15^2\)
\(=>x=2\)
d) \(3^x.3=243\)
\(3^x=243:3\)
\(3^x=81=3^4\)
\(=>x=4\)
e) \(2^x.7=56\)
\(2^x=56:7\)
\(2^x=8=2^3\)
\(=>x=3\)
g) \(x^6:x^3=125\)
\(x^3=125=5^3\)
\(=>x=5\) hoặc \(x=-5\)
\(#NqHahh\)