Tìm ƯC (2n+8;n+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯCLN của 2n + 1 và n + 1
\(\Rightarrow\)2n + 1 \(⋮\)d và n + 1\(⋮\)d
\(\Rightarrow\)( 2n + 1 ) - ( n + 1 )\(⋮\)d
\(\Rightarrow\)( 2n + 1 ) -
2n+5 vaf 2n+6 là 2 số liên tiếp nên luôn luôn có ƯC là 1 nhé!
Goi UC(2n+1;3n+1)=d
Ta co:+/2n+1 chia het cho d=>3(2n+1) chia het cho d
Hay 6n+3 chia het cho d(1)
3n+1 chia het cho d=>2(3n+1) chia het cho d
Hay 6n+2 chia het cho d(2)
Tu (1) va (2) =>(6n+3-6n-2) chia het cho d
=>1 chia het cho d
=>d la uoc cua 1
=>d thuoc tap hop 1;-1
=>tap hop uoc chung cua 2n+1 va 3n+1 la -1;1
Gọi ƯC(n+3,2n+5)=d
=>n+3 chia hết cho d=>2.(n+3) chia hết cho d=>2n+6 chia hết cho d
2n+5 chia hết cho d
=>2n+6-(2n+5) chia hết cho d
=>1 chia hết cho d
=>d=Ư(1)=1
Vậy ƯC(n+2,2n+5)=1
Lời giải:
Đặt $d=ƯC(n+3, 2n+5)$
$\Rightarrow n+3\vdots d; 2n+5\vdots d$
$\Rightarrow 2(n+3)-(2n+5)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $n+3, 2n+5$ có ước chung là $d=1$
gọi ƯC ( n+1; 2n+1) là d nên n+1 chia hết cho d và2n+ 1 chia hết cho d. suy ra 2(n+1)=2n+2 chia hết cho d, suy ra
( 2n+2)-(2n+1)=2n+2-2n-1=1 chia hết cho d nên d=1( vì n thuộc N). vậy d=1
Sửa lại một chút cho dễ xem nhé!
G/s: \(d\inƯC\left(n+1;2n+1\right)\)
=> \(\hept{\begin{cases}n+1⋮d\\2n+1⋮d\end{cases}}\)
=> \(\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+1⋮d\end{cases}}\)
=> \(2\left(n+1\right)-\left(2n+1\right)⋮d\)
=> \(2n+2-2n-1⋮d\)
=> \(1⋮d\)
=> \(d=1\)
Vậy 1 là ƯC ( n+1; 2n +1)
gọi d là ước chung của 2n+8 và n+1
ta có 2n+8 chia hết cho d;n+1 chia hết cho d
vì n+1 chia hết cho d nên n chia hết cho d, 1 chia hết cho d
ta có (2n+8)-2x(n+1)
=(2n+8)-(2n+2)
=2n+8-2n-2
=8-2
=6
vậy ước chung của 2n+8 và n+1 là 6
ô thank you