tìm x, biết
(27 - x) . (3x + 9) . (42 - 6x) = 0
giúp mik vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>2x^2-2x+2x-2-2x^2-x-4x-2=0
=>-5x-4=0
=>x=-4/5
b: =>6x^2-9x+2x-3-6x^2-12x=16
=>-19x=19
=>x=-1
c: =>48x^2-12x-20x+5+3x-48x^2-7+112x=81
=>83x=83
=>x=1
2:
=>x^3-1-2x^3-4x^6+4x^6+4x=6
=>-x^3+4x-7=0
=>x=-2,59
4: =>8x-24x^2+2-6x+24x^2-60x-4x+10=-50
=>-62x+12=-50
=>x=1
a
\(x+x^2-x^3-x^4=0\\ \Leftrightarrow x\left(1+x\right)-x^3\left(1+x\right)=0\\ \Leftrightarrow\left(1+x\right)\left(x-x^3\right)=0\\ \Leftrightarrow\left(1+x\right).x.\left(1-x^2\right)=0\\ \Leftrightarrow\left(1+x\right).x.\left(1-x\right)\left(1+x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
b
x^3 chứ: )
\(x^3+27+\left(x+3\right)\left(x-9\right)=0\\ \Leftrightarrow x^3+3^3+\left(x+3\right)\left(x-9\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\\ \Leftrightarrow\left(x+3\right).x.\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=2\end{matrix}\right.\)
\(a,\Leftrightarrow\left(x-2\right)^3-3x\left(x-2\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x-2-3x\right)=0\\ \Leftrightarrow\left(x-2\right)\left(-2x-2\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\\ b,\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\\ \Leftrightarrow x\left(x-2\right)\left(x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-3\end{matrix}\right.\)
a) (2x-121)1990=1990
2x-121=1990:1990
2x-121=1
2x=1+121
2x=122
x=122:2
x=61
b)(3x-27).2016=0
3x-27=0:2016
3x-27=0
3x=0+27
x=27:3
x=9
c)x.(3x-9)=0
=> hai trường hợp x=0 hoặc 3x-9=0
3x-9=0
3x=0+9
3x=9
x=9:3
x=3
=> x =0;3
d)
(x-1)(x-5)=0
có 2 trường hợp
x-1=0 và x-5=0
x=1+0=1 x=5+0=5
=>x=1;5
k cho mình nha <3
Dài quá ! Nên vẫn phải làm ^_^.
Bài 1:
+) \(A=x^2-2x+6=x^2-2x+1+5=\left(x-1\right)^2+5\ge5\)
Min A = 5 \(\Leftrightarrow x=1\)
+) \(B=x^2+6x+12=x^2+6x+9+3=\left(x+3\right)^2+3\ge3\)
Min B = 3 \(\Leftrightarrow x=-3\)
+) \(C=4-x^2+2x=-\left(x^2-2x+4\right)=-\left[\left(x-1\right)^2+3\right]=-\left(x-1\right)^2-3\le-3\)
Max C = -3 \(\Leftrightarrow x=1\)
+) \(D=-x^2+6x=-\left(x^2-6x+9-9\right)=-\left(x-3\right)^2+9\le9\)
Max D = 9 \(\Leftrightarrow x=3\)
Bài 2 :
a) \(x^2-x-3x+3=0\)
\(\Leftrightarrow x^2-4x+4-1=0\)
\(\Leftrightarrow\left(x-2\right)^2-1=0\)
\(\Leftrightarrow\left(x-2-1\right)\left(x-2+1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
b) \(\left(x-3\right)^2-4=0\)
\(\Leftrightarrow\left(x-3-2\right)\left(x-3+2\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=1\end{cases}}\)
c) Xem lại đề hộ mình nha
d) \(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)
\(\Leftrightarrow x\left(x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow x\in\left\{0;-3;2\right\}\)
\(\left(x-1\right)3+3x\left(x-1\right)=0\)
<=> \(3\left(x-1\right)\left(x+1\right)=0\)
<=> \(\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
Vậy...
Bài 1:
a) \(x^3-16x=x\left(x-4\right)\left(x+4\right)\)
b) \(3x^2+3y^2-6xy-12=3\left(x^2-2xy+y^2-4\right)=3\left(x-y-2\right)\left(x-y+2\right)\)
c) \(x^2+6x+5=\left(x+1\right)\left(x+5\right)\)
d) \(x^4+x^3+2x^2+x+1=\left(x^2+x+1\right)\left(x^2+1\right)\)
Bài 2:
a) Ta có: \(\left(x+6\right)^2=144\)
\(\Leftrightarrow\left[{}\begin{matrix}x+6=12\\x+6=-12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-18\end{matrix}\right.\)
b) Ta có: \(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\)
\(\Leftrightarrow x\left(x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=2\end{matrix}\right.\)
c) Ta có: \(2x^2-x-6=0\)
\(\Leftrightarrow2x^2-4x+3x-6=0\)
\(\Leftrightarrow2x\left(x-2\right)+3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{3}{2}\end{matrix}\right.\)
\(\left(27-x\right)\cdot\left(3x+9\right)\cdot\left(42-6x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}27-x=0\\3x+9=0\\42-6x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=27\\x=-3\\x=7\end{matrix}\right.\)
Vậy \(x\in\left\{-3;7;27\right\}\)
\(\left(27-x\right)\cdot\left(3x+9\right)\cdot\left(42-6x\right)=0\)
27-x=0 hoặc 3x+9=0 hoặc 42-6x=0
+ 27-x=0
x=0+27
x=27
+3x+9=0
3x=0+9
3x=9
x=9:3
x=3
+42-6x=0
6x= 0+42
6x=42
x=42:6
x=7
vậy x=27 hoặc x=3 hoặc x=7